229 research outputs found

    Machine Learning-Incorporated Transient Stability Prediction and Preventive Dispatch for Power Systems with High Wind Power Penetration

    Get PDF
    Historically, transient instability has been the most severe stability challenge for most systems. Transient stability prediction and preventive dispatch are two important measures against instability. The former measure refers to the rapid prediction of impending system stability issues in case of a contingency using real-time measurements, and the latter enhances the system stability against preconceived contingencies leveraging power dispatch. Over the last decade, large-scale renewable energy generation has been integrated into power systems, with wind power being the largest single source of increased renewable energy globally. The continuous evolution of the power system poses more challenges to transient stability. Specifically, the integration of wind power can decrease system inertia, affect system dynamics, and change the dispatch and power flow pattern frequently. As a result, the effectiveness of conventional stability prediction and preventive dispatch approaches is challenged. In response, a novel transient stability prediction method is proposed. First, a stability index (SI) that calculates the stability margin of a wind power-integrated power system is developed. In this method, wind power plants (WPPs) are represented as variable admittances to be integrated into an equivalent network during transients, whereby all WPP nodes are eliminated from the system, while their transient effects on each synchronous generator are retained. Next, the calculation of the kinetic and potential energies of a system is derived, and accordingly, a novel SI is put forward. The novel approach is then proposed taking advantage of the machine learning (ML) technique and the newly defined SI. In case of a contingency, the developed SI is calculated in parallel for all possible instability modes (IMs). The SIs are then formed as a vector and applied to an ensemble learning-trained model for transient stability prediction. Compared with the features used in other studies, the SI vector is more informative and discriminative, thus lead to a more accurate and reliable prediction. The proposed approach is validated on two IEEE test systems with various wind power penetration levels and compared to the existing methods, followed by a discussion of results. In addition, to address the issues existing in preventive dispatch for high wind power-integrated electrical systems, an hour-ahead probabilistic transient stability-constrained power dispatching method is proposed. First, to avoid massive transient stability simulations in each dispatching operation, an ML-based model is trained to predict the critical clearing time (CCT) and IM for all preconceived fault scenarios. Next, a set of IM-categorized probabilistic transient stability constraints (PTSCs) are constructed. Based on the predictions, the system operation plan is assessed with respect to the PTSCs. Then, the sensitivity of the probabilistic level of CCT is calculated with respect to the active power generated from the critical generators for each IM category. Accordingly, the implicit PTSCs are converted into explicit dispatching constraints, and the dispatch is rescheduled to ensure the probabilistic stability requirements of the system are met at an economical operating cost. The proposed approach is validated on modified IEEE 68- and 300-bus test systems, wherein the wind power installed capacity accounts for 40% and 50% of the total load, respectively, reporting high computational efficiency and high-quality solutions. The ML-incorporated transient stability prediction and preventive dispatch methods proposed in this research work can help to maintain the transient stability of the system and avoid the widespread blackouts

    Experimental and numerical investigation on the influence of the clocking position on hydraulic performance of a centrifugal pump with guide vane

    Get PDF
    The investigation of the clocking effect mainly concentrates on turbines and compressors, but seldom in centrifugal pumps. In this paper, using numerical simulation and experiment, the influence of the clocking effect on the hydraulic performance of centrifugal pump with guide vane is studied. Numerical simulations with SST k-w turbulence model were applied to obtain the inner flow field of the test pump. The numerical simulations coincide with the test result, which indicates the accurate of the utilized numerical approach. The results show the clocking positions have an important effect on hydraulic performance of the centrifugal pump with guide vane. The pump demonstrates the higher efficiency and head as the tongue locate between two guide vanes. The hydraulic performance of the volute is a major factor impacting the performance of the centrifugal pump with different clocking positions. However, the clocking position has almost no effect on the performances of the impeller and diffuser. When the guide vane is close to the volute tongue, flow field of volute is more non-uniform, and the energy loss in volute appears to be larger. The results and the method of this paper can provide theoretical reference for the design and installation of guide vane in centrifugal pump

    Towards Higher Ranks via Adversarial Weight Pruning

    Full text link
    Convolutional Neural Networks (CNNs) are hard to deploy on edge devices due to its high computation and storage complexities. As a common practice for model compression, network pruning consists of two major categories: unstructured and structured pruning, where unstructured pruning constantly performs better. However, unstructured pruning presents a structured pattern at high pruning rates, which limits its performance. To this end, we propose a Rank-based PruninG (RPG) method to maintain the ranks of sparse weights in an adversarial manner. In each step, we minimize the low-rank approximation error for the weight matrices using singular value decomposition, and maximize their distance by pushing the weight matrices away from its low rank approximation. This rank-based optimization objective guides sparse weights towards a high-rank topology. The proposed method is conducted in a gradual pruning fashion to stabilize the change of rank during training. Experimental results on various datasets and different tasks demonstrate the effectiveness of our algorithm in high sparsity. The proposed RPG outperforms the state-of-the-art performance by 1.13% top-1 accuracy on ImageNet in ResNet-50 with 98% sparsity. The codes are available at https://github.com/huawei-noah/Efficient-Computing/tree/master/Pruning/RPG and https://gitee.com/mindspore/models/tree/master/research/cv/RPG.Comment: NeurIPS 2023 Accepte

    Primary clear cell adenocarcinoma of the bladder with recurrence: a case report and literature review

    Get PDF
    Clear cell carcinoma of the bladder is a rare tumor of the bladder. There are few reports available on this rare disease, and no cases with recurrence were reported. Here we present a case of 68-year-old woman with primary clear cell carcinoma of the bladder, who underwent repeat TUR-BT and tumor recurrence. We also reviewed the previous treatments and prognoses in previous case reports and evaluate the proper treatment for this disease. Once the diagnosis is determined, the radical surgery should be recommended. The recurrence is not prevented based on post-TUR intravesical therapy

    Multiscale Positive-Unlabeled Detection of AI-Generated Texts

    Full text link
    Recent releases of Large Language Models (LLMs), e.g. ChatGPT, are astonishing at generating human-like texts, but they may get misused for fake scholarly texts, fake news, fake tweets, et cetera. Previous works have proposed methods to detect these multiscale AI-generated texts, including simple ML classifiers, pretrained-model-based training-agnostic methods, and finetuned language classification models. However, mainstream detectors are formulated without considering the factor of corpus length: shorter corpuses are harder to detect compared with longer ones for shortage of informative features. In this paper, a Multiscale Positive-Unlabeled (MPU) training framework is proposed to address the challenge of multiscale text detection. Firstly, we acknowledge the human-resemblance property of short machine texts, and rephrase text classification as a Positive-Unlabeled (PU) problem by marking these short machine texts as "unlabeled" during training. In this PU context, we propose the length-sensitive Multiscale PU Loss, where we use a recurrent model in abstraction to estimate positive priors of scale-variant corpuses. Additionally, we introduce a Text Multiscaling module to enrich training corpuses. Experiments show that our MPU method augments detection performance on long AI-generated text, and significantly improves short-corpus detection of language model detectors. Language Models trained with MPU could outcompete existing detectors by large margins on multiscale AI-generated texts. The codes are available at https://github.com/mindspore-lab/mindone/tree/master/examples/detect_chatgpt and https://github.com/YuchuanTian/AIGC_text_detector

    Detection of Flare-induced Plasma Flows in the Corona of EV Lac with X-ray Spectroscopy

    Full text link
    Stellar flares are characterized by sudden enhancement of electromagnetic radiation from the atmospheres of stars. Compared to their solar counterparts, our knowledge on the coronal plasma dynamics of stellar flares and their connection to coronal mass ejections (CMEs) remains very limited. With time-resolved high-resolution spectroscopic observations from the \textit{Chandra} X-ray observatory, we detected noticeable coronal plasma flows during several stellar flares on a nearby dMe star EV Lac. In the observed spectra of O~{\sc{viii}} (3 MK), Fe~{\sc{xvii}} (6 MK), Mg~{\sc{xii}} (10 MK), and Si~{\sc{xiv}} (16 MK) lines, these flare-induced upflows/downflows appear as significant Doppler shifts of several tens to \speed{130}, and the upflow velocity generally increases with temperature. Variable line ratios of the Si~{\sc{xiii}} triplet reveal that these plasma flows in most flares are accompanied by an increase of the coronal plasma density and temperature. We interpret these results as X-ray evidences for chromospheric evaporation on EV Lac. In two successive flares, the plasma flow pattern and a sharp increase of the measured coronal density are highly suggestive of explosive evaporation. The transition from redshifts to blueshifts in such an explosive evaporation occurs at a temperature of at least 10 MK, much higher than that observed in solar flares (\sim1 MK). However, in one flare the cool and warm upflows appear to be accompanied by a decreasing plasma density, which might be explained by a stellar filament/prominence eruption coupled to this flare. These results provide important clues to understand the coronal plasma dynamics during flares on M dwarfs.Comment: accepted by Ap

    Partial femoral head replacement: a new innovative hip-preserving approach for treating osteonecrosis of the femoral head and its finite element analysis

    Get PDF
    Purpose: Controversy remains regarding the optimal treatment for stage III Osteonecrosis of the femoral head (ONFH). This study presents, for the first time, the precise treatment of stage III ONFH using the “substitute the beam for a pillar” technique and performs a comparative finite element analysis with other hip-preserving procedures.Methods: A formalin-preserved femur of male cadavers was selected to obtain the CT scan data of femur. The proximal femur model was reconstructed and assembled using Mimics 20.0, Geomagic, and UG-NX 12.0 software with four different implant types: simple core decompression, fibula implantation, porous tantalum rod implantation, and partial replacement prosthesis. The finite element simulations were conducted to simulate the normal walking gait, and the stress distribution and displacement data of the femur and the implant model were obtained.Results: The peak von Mises stress of the femoral head and proximal femur in the partial replacement of the femoral head (PRFH) group were 22.8 MPa and 37.4 MPa, respectively, which were 3.1%–38.6% and 12.8%–37.4% lower than those of the other three surgical methods.Conclusion: The PRFH group exhibits better mechanical performance, reducing stress and displacement in the ONFH area, thus maintaining femoral head stability. Among the four hip-preserving approaches, from a biomechanical perspective, PRFH offers a new option for treating ONFH

    Non-volatile Components and Filamentary Morphology of Fresh Leaves of Zigui Simian Tea

    Get PDF
    To investigate the characteristics of quality formation of Simian tea, the non-volatile components, mineral elements and filamentary structure of fresh leaves from different positions of ‘Simian Tucha’ tea plants, endemic to Zigui, were analyzed using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), and scanning electron microscopy (SEM). The results showed that the non-volatile components were more abundant in the leaves with higher tenderness, with amino acids, alkaloids, catechins, and aroma glycosides being mainly concentrated in the first (L1) and second leaves (L2). Theanine, organic acids, and flavonoids were mainly concentrated in the third leaf (L3), while the content of non-volatile components in the older leaves was relatively lower. The accumulation of mineral elements greatly varied among tea leaves with different tenderness. The contents of nitrogen, phosphorus, potassium, zinc, and copper in L1 (32.41 mg/g, 4.53 mg/g, 15.65 mg/g, 45.45 μg/g, and 10.75 μg/g, respectively) and L2 (30.60 mg/g, 3.70 mg/g, 14.12 mg/g, 35.82 μg/g, 9.02 μg/g, respectively) were higher than those in older leaves. The contents of iron, manganese, and calcium were higher in mature leaves. Through SEM observation, it was found that the filamentary structure of Simian tea leaves consisted of two forms, triple-stranded coil and single-stranded coil, and was distributed in the internal thread or ringed vessels of the xylem in the vascular bundles in the midvein and lateral veins, and the number of filamentary structures was higher in the second, third and fourth leaves than that in buds and L1

    Microbial community structure characteristics among different karst aquifer systems, and its potential role in modifying hydraulic properties of karst aquifers

    Get PDF
    Little is known about how microbial activity affects the hydraulic properties of karst aquifers. To explore the potential impacts of microbial activity on the hydraulic properties of karst aquifers, microbiological analysis, heat tracer, isotope (dissolved inorganic carbon isotope, δ13CDIC) and aqueous geochemical analyses were conducted at six monitoring wells in Northern Guangdong Province, China. Greater hydraulic conductivity corresponded to a low temperature gradient to an extent; the temperature gradient in karst groundwater aquifers can reflect the degree of dissolution. Higher HCO3− concentrations coupled with lower d-excess and pH values at B2 and B6 reflect potential microbial activity (e.g., Sulfuricurvum kujiense) causing carbonate dissolution. Microbial activity or the input of anthropogenic acids, as evidenced by significantly more positive δ13CDIC values, potentially affect carbonate dissolution in deep karst aquifers, which eventually alters hydraulic properties of karst aquifer. However, more direct evidence is needed to quantify the effects of microbial activity on carbonate dissolution in karst aquifers

    Histopathological Observation of Immunized Rhesus Macaques with Plague Vaccines after Subcutaneous Infection of Yersinia pestis

    Get PDF
    In our previous study, complete protection was observed in Chinese-origin rhesus macaques immunized with SV1 (20 µg F1 and 10 µg rV270) and SV2 (200 µg F1 and 100 µg rV270) subunit vaccines and with EV76 live attenuated vaccine against subcutaneous challenge with 6×106 CFU of Y. pestis. In the present study, we investigated whether the vaccines can effectively protect immunized animals from any pathologic changes using histological and immunohistochemical techniques. In addition, the glomerular basement membranes (GBMs) of the immunized animals and control animals were checked by electron microscopy. The results show no signs of histopathological lesions in the lungs, livers, kidneys, lymph nodes, spleens and hearts of the immunized animals at Day 14 after the challenge, whereas pathological alterations were seen in the corresponding tissues of the control animals. Giemsa staining, ultrastructural examination, and immunohistochemical staining revealed bacteria in some of the organs of the control animals, whereas no bacterium was observed among the immunized animals. Ultrastructural observation revealed that no glomerular immune deposits on the GBM. These observations suggest that the vaccines can effectively protect animals from any pathologic changes and eliminate Y. pestis from the immunized animals. The control animals died from multi-organ lesions specifically caused by the Y. pestis infection. We also found that subcutaneous infection of animals with Y. pestis results in bubonic plague, followed by pneumonic and septicemic plagues. The histopathologic features of plague in rhesus macaques closely resemble those of rodent and human plagues. Thus, Chinese-origin rhesus macaques serve as useful models in studying Y. pestis pathogenesis, host response and the efficacy of new medical countermeasures against plague
    corecore