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Abstract 

Historically, transient instability has been the most severe stability challenge for most systems. 

Transient stability prediction and preventive dispatch are two important measures against 

instability. The former measure refers to the rapid prediction of impending system stability issues 

in case of a contingency using real-time measurements, and the latter enhances the system stability 

against preconceived contingencies leveraging power dispatch. Over the last decade, large-scale 

renewable energy generation has been integrated into power systems, with wind power being the 

largest single source of increased renewable energy globally. The continuous evolution of the 

power system poses more challenges to transient stability. Specifically, the integration of wind 

power can decrease system inertia, affect system dynamics, and change the dispatch and power 

flow pattern frequently. As a result, the effectiveness of conventional stability prediction and 

preventive dispatch approaches is challenged. 

In response, a novel transient stability prediction method is proposed. First, a stability index 

(𝑆𝐼) that calculates the stability margin of a wind power-integrated power system is developed. In 

this method, wind power plants (WPPs) are represented as variable admittances to be integrated 

into an equivalent network during transients, whereby all WPP nodes are eliminated from the 

system, while their transient effects on each synchronous generator are retained. Next, the 

calculation of the kinetic and potential energies of a system is derived, and accordingly, a novel 

𝑆𝐼 is put forward. The novel approach is then proposed taking advantage of the machine learning 

(ML) technique and the newly defined SI. In case of a contingency, the developed SI is calculated 

in parallel for all possible instability modes (IMs). The SIs are then formed as a vector and applied 

to an ensemble learning-trained model for transient stability prediction. Compared with the 

features used in other studies, the 𝑆𝐼 vector is more informative and discriminative, thus lead to a 

more accurate and reliable prediction. The proposed approach is validated on two IEEE test 

systems with various wind power penetration levels and compared to the existing methods, 

followed by a discussion of results. 

In addition, to address the issues existing in preventive dispatch for high wind power-integrated 

electrical systems, an hour-ahead probabilistic transient stability-constrained power dispatching 

method is proposed. First, to avoid massive transient stability simulations in each dispatching 

operation, an ML-based model is trained to predict the critical clearing time (CCT) and IM for all 
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preconceived fault scenarios. Next, a set of IM-categorized probabilistic transient stability 

constraints (PTSCs) are constructed. Based on the predictions, the system operation plan is 

assessed with respect to the PTSCs. Then, the sensitivity of the probabilistic level of CCT is 

calculated with respect to the active power generated from the critical generators for each IM 

category. Accordingly, the implicit PTSCs are converted into explicit dispatching constraints, and 

the dispatch is rescheduled to ensure the probabilistic stability requirements of the system are met 

at an economical operating cost. The proposed approach is validated on modified IEEE 68- and 

300-bus test systems, wherein the wind power installed capacity accounts for 40% and 50% of the 

total load, respectively, reporting high computational efficiency and high-quality solutions. 

The ML-incorporated transient stability prediction and preventive dispatch methods proposed 

in this research work can help to maintain the transient stability of the system and avoid the 

widespread blackouts. 
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𝒀𝐺𝐻  Mutual admittance matrix between nodes in sets ΩG and  ΩH 

𝒀𝐺𝑅  Mutual admittances matrix between nodes in sets ΩG and  ΩR 
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ℏ𝑗(∙)  Function of individual learner j 

ℋ𝑘(∙)  Function that describes 𝜌𝑘(CCT > 𝛼𝑘). 

℘(∙)  Probability distribution function of CCT  
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1 Introduction 

1.1 Motivation 

Power systems are usually subjected to various weather conditions and fortuitous events that 

may lead to incidents causing partial or complete instability of the grid, followed by widespread 

blackouts. During the last several decades, large-scale blackouts caused by large-disturbances in 

power systems occurred in many countries, including the United States, Canada, Italy, India, etc. 

Table 1.1 lists some of the major power outages during the past two decades. These incidents 

resulted in enormous national economic losses and affected millions of customers.  

Table 1.1: List of selected power system blackouts. 

Incident 
Affected 

population(millions) 
Location Date 

2019 Java blackout 120 Indonesia August 4 –5 

2019 Venezuelan blackout 30 Venezuela March 7–March 14 

2016 Sri Lanka blackout 21 Sri Lanka March 13 

2015 Pakistan blackout 140 Pakistan January 26 

2014 Bangladesh blackout 150 Bangladesh November 1 

2012 India blackout 620 India July 30–31 

2003 Northeast blackout 55 
Canada and the United 

States 
August 14–28 

2003 Italy blackout 56 Italy and Switzerland September 28 

2001 India blackout 230 India January 2 

Historically, transient stability, also known as large-disturbance rotor angle stability, has been 

the most severe stability problem in most systems [1]. Transient stability prediction and preventive 

dispatch are two important measures against transient instability. Transient stability prediction 

https://en.wikipedia.org/wiki/2019_Java_blackout
https://en.wikipedia.org/wiki/2019_Venezuelan_blackouts
https://en.wikipedia.org/wiki/2012_India_blackouts
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003
https://en.wikipedia.org/wiki/2003_Italy_blackout
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refers to the rapid prediction of system stability in case of a contingency using real-time 

measurement data. Fast prediction of the potential instabilities allows more time for remedial 

actions, thus minimizing the impacts of instability on the system. By contrast, preventive dispatch 

is concerned with dispatching the generation in the power system so that the required stability level 

is obtained. In short, the former predicts the impending stability status of post-fault systems, while 

the latter enhances the system stability against preconceived contingencies by power dispatch. 

These two measures are of great significance in improving the system stability level and avoiding 

widespread blackouts. 

Several studies have explored the solutions regarding the two measures and achieved certain 

results. However, the existing methods may face severe dilemmas as the power systems are 

keeping evolving. One of the most significant changes in power systems over the last few years is 

the growing integration of renewable energy sources (RESs) and their related devices. High 

participation of RESs in power systems, on one hand, helps in reducing carbon emissions; on the 

other hand, it may significantly affect the operating condition and transient behavior of power 

systems in unfavorable manner [2]–[9]. Moreover, high penetration of RESs conversion systems 

may degrade the solution quality, increase computational burden and diminish the applicability of 

conventional transient stability prediction and preventive dispatch methods. Therefore, it is felt 

that more research should be done on developing novel countermeasure methods, including new 

transient stability prediction and preventive dispatch techniques. 

1.2  Literature Review 

This section presents a thorough review of the current literature, including the changing trend of 

the power systems in terms of integration of wind energy, transient stability prediction studies, 

preventive dispatch studies, and the application of Machine Learning (ML) in power systems.  

1.2.1 Integration of Wind Energy 

With increasing concerns about energy security, fuel diversity, and climate change, many 

countries worldwide have implemented policies supporting green energy [10]. During the last few 

years, wind energy has positioned itself as the world's most promising RES. In terms of install 

capacity, in 2019, 60.4 GW of wind energy capacity was installed globally, increasing 19% over 
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2018 and bringing the total global capacity over 651 GW [11]. In Canada, 13,413 MW of wind 

energy capacity are installed until 2019 [12]. Specifically, the province of Saskatchewan has 

committed to increasing its wind-power capacity from 5% currently to 30% by 2030 [13]. In terms 

of electricity consumption, wind energy has gone from a niche to a mainstream energy source in 

recent decades. For example, in China, it constitutes the third largest energy source. In Europe, 

wind power covered 47% of the electricity demand of Denmark in 2019, followed by Ireland at 

32%, and Portugal at 27% [14]. In the United States, wind energy provided the source of 7.3% of 

the nation’s electricity generation [15]. As for Canada, wind power accounted for 5.1% of 

electricity generation in 2018 [12]. 

1.2.2 Transient Stability Prediction 

1.2.2.1 Stability Issues 

Power system stability issues can be broadly classified as: transient stability, small-signal rotor 

angle stability, voltage stability, and frequency stability [1]. The categorization of power system 

stability is based on the physical nature of the resulting mode of instability, the size of the 

disturbance considered, and the devices involved, as well as the time span of interest [1], [16]. 

In the studies presented in this thesis, attention is focused on transient stability as it has been the 

most severe stability challenge for most systems. Transient stability is the ability of a power system 

to maintain synchronism when subjected to a large disturbance (e.g. a system fault, a loss of a 

major transmission line and the sudden application of a large load). Under any steady-state 

operating condition, there is an equilibrium between the electromagnetic torque and mechanical 

torque of each synchronous generator (SG) in the system. This equilibrium is disturbed as faults 

occur, resulting in a single or multiple SGs temporarily run faster than the rest. In this situation, 

the relative rotor angle between the “faster” and “slower” SGs increases. Due to the kinetic energy 

accumulated during the disturbance, this increasing trend generally continues for a short period of 

time after the disturbance is cleared. If the system can completely absorb the kinetic energy before 

the relative rotor angle reaches a certain limit, the synchronism of the system is restored; while if 

the value of the relative rotor angle exceeds a certain limit, the relative rotor angle irreversibly 

increases and the synchronism of the system will be lost and instability occurs. The time frame of 

interest in transient stability studies is usually 1 to 5 seconds following the disturbance. Loss of 
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synchronism can occur between one SG and the rest of the system, or between groups of SGs.  

Transient stability of the system is affected by several factors, including the nature of the system 

(devices connected, system topology, system scale, etc.), the location, type and duration of the 

contingency, the original operating point of the system before the contingency, etc. 

1.2.2.2 When to and Why Predict  

Stability prediction:

unstable case

𝑡  : fault clearance𝑡f: fault occurs

Stability prediction:

stable case

(a)

(b)

 

Figure 1.1: Relative generator rotor angles resulting from a system fault.  

(a) Unstable case. (b) Stable case. 

The loss of synchronism of a power system may occur within seconds after a disturbance. As an 

illustrative example, Figure 1.1 shows two cases of the rotor angle curves of the SGs when 

subjected to contingencies. The simulation is conducted on IEEE 16-machine 68-buses system. 

Figure (a) is an unstable case, as the relative rotor angles of two SG groups are keeping diverging 

after a contingency, and accordingly, the synchronism of the system is destroyed. In contrast, 

figure (b) shows a stable case, where all the rotor angles of the “faster” SGs go back to synchronous 

after oscillations. A prediction method should predict whether the system will be stable accurately 
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as soon as possible right after fault clearance [17]. If the system will remain stable, then no more 

remedial action is required; thus, unnecessary operations can be avoided. Otherwise, remedial 

actions, such as islanding, load shedding and generator tripping, should be triggered immediately. 

Generally, the earlier the actions are triggered, the greater the probability that the synchronism of 

the system is restored. 

1.2.2.3 Current Candidate Methods 

Several techniques have been used for transient stability prediction. These techniques can be 

generally classified into three basic categories:  

1) Time-domain simulations, 

2) Transient Energy Function (TEF)-based methods, and  

3) Machine-Learning (ML) -based prediction techniques [17].  

Among these techniques, time-domain simulation is the most accurate option in which power 

system dynamic models are represented by sets of differential-algebraic equations (DAEs) that are 

solved in each time step during simulation and the stability of the system can be determined by 

analyzing the behavior of the SG rotor angles [18], [19]. This approach requires accurate 

information about the network configuration to conduct the accurate simulation. There are multiple 

commercial power system simulation packages that are capable of carrying out reliable transient 

simulations, including but not limited to DSATools [20], DIgSILENT PowerFactory [21], EMTP 

[22], ETAP [23], Power world [24], PSS/E [25], PSCAD [26], etc. However, this approach is 

mainly for offline power system studies and may not be suitable for online stability prediction. 

This is because the system may face transient instability for a short period, ranging from 10 cycles 

to a few seconds after a severe fault [27]. Hence, it is almost impossible to complete a transient 

stability simulation for stability prediction in this short period, specifically for a large network.  

The family of TEF-based stability assessment methods is another candidate approach for 

stability prediction [28]–[43]. Utilizing simplified power system models, these methods can 

rapidly evaluate the kinetic and potential energies of a post-fault system, thus obtaining the 

stability margin by comparing the two energies. Due to their excellent performance at computation 

speeds, these methods are mostly used in fast contingency screening and online transient stability 

assessment, i.e., assess the system operating status by carrying out transient simulation for all 

javascript:;
javascript:;
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preconceived contingencies. Nevertheless, there are still some problems in their application in 

power system stability prediction [2]. First, the accuracy of these methods may subject to the 

complexity of power systems. In addition, considering the uncontrollable error, these methods may 

be more suitable for comparing the relative stability of a system under various faults, other than 

making stability prediction, which is a ‘Yes’ or ‘No’ question. Besides, these approaches require 

accurate identification of the instability mode (IM), known as clustering of the critical and 

remaining generators, during the calculation; yet, the identification process may delay the 

decision-making [44]–[45]. 

Last but not least, the ML-based technique is another popular approach for transient stability 

prediction thanks to the widespread use of phasor measurement units (PMUs) in power systems 

[46]. PMUs are devices measuring the data of power systems in real-time, such as voltage and 

current phasors with a reporting frequency of typically 30–60, even 100 samples per second [47]–

[53]. Due to the availability of real-time power system data, ML techniques have been received 

increasing attention for transient stability prediction. Different ML techniques, e.g., decision trees 

(DTs) [17], [54]–[58] artificial neural networks (ANNs) [59], [60], support vector machines 

(SVMs) [61], [62], extreme learning machine [63], and core vector machine [64] have been applied 

so far to process real-time synchronized data and make online transient stability prediction. In most 

methods, pre- and post-fault data, such as time series voltages and rotor angles, are served as input 

features. ML-based prediction methods are prominent in calculation speed and are adaptable to 

bulk power systems. Still, the integration of wind power plants (WPPs) and their controllers are 

changing the static and dynamic characteristics of power systems, which may affect the 

performance of the existing ML-based prediction approaches [2]–[9]. First, the output of WPPs 

can vary both temporally and spatially, which exponentially increases the required training data 

[65]. Second, as uncertainties and complexity of the system increase, existing features such as bus 

voltages, which are obtained via PMU measurements, may no longer be so useful [17], [56], [66]. 

Third, most of the ML-based studies mentioned above utilize post-fault data obtained after fault 

clearance for stability prediction, which postpones the forecasting phase. As corrective control 

action should come into effect to preserve the network as quickly as possible, fast and accurate 

prediction of stability status is a real concern. 

https://www.sciencedirect.com/topics/engineering/phasor
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1.2.3 Preventive Dispatch 

In steady-state operations, power systems are expected to operate economically while 

maintaining the stability requirements of the grid. Such restrictions ensure avoiding huge economic 

losses resulted from different contingencies, such as transient instability. 

In such a context, optimal power flow (OPF) has been widely studied to address the economic 

side, followed by exploring various solutions for transient stability constrained OPF (TSC-OPF) 

problem. In power system simulation, transient stability of a post-fault system is determined by 

solving a set of DAEs that represent the system transients, while power flow corresponds to the 

initial point, which significantly affects the DAEs results. However, the TSC-OPF, which is a 

DAE-constrained optimization problem, cannot be solved directly. One of the most popular 

solutions is to discretize the DAEs into a set of algebraic constraints in terms of small-time steps 

then solve the problem by either linear or nonlinear programming techniques [67]–[69]. Another 

prevalent method is the trajectory sensitivity-based technique, which iteratively adjusts the 

dispatch based on the sensitivity of the stability index of interest to the control variables with the 

aid of time-domain simulations (TDSs) [70]–[74]. The evolution algorithm-based technique is 

another feasible solution that seeks the optimal solution of the TSC-OPF problem uses mechanisms 

inspired by biological evolution [75]–[76].  

Set aside the pros and cons of these approaches, however, they mainly focus on deterministic 

systems. Given power systems are constantly penetrated with RESs like wind power, which is 

highly variable even in one hour, it is important to consider stochastic variations of the renewables 

in power dispatch [77]. The multisource renewables and related high-level uncertainties 

exponentially increase the possible system pre-fault operation points. As a result, extensive 

operation points need to be considered for dispatch, which entails an excessive computation burden 

that may be computationally intractable by these approaches. In view of OPF may need to be 

solved hour-ahead for most systems, the high-efficiency methods are required [78], [79]. 

In addition, as the stochastic factors in power systems affect the transient stability level of the 

systems, it is necessary to analyze the effects from the probabilistic perspective instead of 

deterministic. An early probabilistic transient stability study is reported in [80], which considered 

the uncertainties of loads, fault occurrence, location, type and clearing time, and of wind generation 

afterward in [81]. Both studies carried out a large number of Monte Carlo TDS. Later, a point 

javascript:;
javascript:;
https://en.wikipedia.org/wiki/Biological_evolution
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estimate method and Kalman filter are respectively applied in [82] and [83] to estimate the 

uncertainty of the system stability margin caused by the wind power uncertainties, which help to 

eliminate the excessive testing scenarios, thus reduce the computation time in TSC-OPF problem. 

Taguchi’s orthogonal array testing is utilized in [84] to decompose the probabilistic problem into 

several deterministic problems, thus reduce the testing scenarios. However, these methods may 

lack sufficient statistics. In other words, the estimated probabilistic stability index may not contain 

enough uncertainty information from wind power generations. Besides, the accuracy of the 

estimation may degrade if the wind generation does not follow the predetermined probability 

distribution type, e.g., Weibull [82] and Gaussian [84]. Yet, the assumed probability distribution 

type cannot be valid all the time since the dynamic characteristics of wind power are highly 

complex. 

Moreover, existing TSC-OPF studies generally cope with merely one or a few specific fault 

locations. However, a particular dispatching scheme made against specific fault scenarios may, in 

turn, deteriorate the system stability against other scenarios. Given the probabilistic nature of 

different contingency events, a dispatch method that reasonably allocates “stability resources” 

against the various potential faults can benefit the overall stability of systems. Therefore, more 

works are required in this regard.  

1.2.4 Applications of ML in Power Systems 

Over the last few decades, the power industry is moving rapidly towards digitalization and 

intelligence, and an impressive number of ML-related methodologies have been proposed in the 

power system community to facilitate this transformation.  

From a technical perspective, ML techniques can be classified into (1) Supervised learning, (2) 

Unsupervised learning and (3) Reinforcement learning. Supervised learning is to infer a function 

that maps an input to an output based on example input-output pairs [85]. In academia, supervised 

learning techniques have been widely applied to different areas of study in power systems, 

including forecasting of renewable energy generation [86], stability prediction [54]–[64], stability 

assessment [87], [88], fault detection [89], dynamic security assessment [90], [91], system 

operation [92], etc. By contrast, unsupervised learning is a type of algorithm used to draw 

inferences from datasets consisting of input data without labelled responses. It is commonly used 

javascript:;
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for cluster analysis. In [93]–[95], unsupervised learning methods are applied in forecasting and 

pattern recognition of residential load. Unlike supervised and unsupervised learning, 

reinforcement learning is concerned with how intelligent agents ought to take actions in an 

environment to maximize the notion of cumulative reward. In power system areas, reinforcement 

learning techniques have been applied in energy management [96], [97], demand response [98], 

[99], electricity market [100], [101], operational control [102], [103], etc. 

1.3 Research Objectives  

The first objective of this thesis is to develop an ML-incorporated transient stability prediction 

method for power systems with high wind power penetration. Based on the literature review, most 

of the existing methods directly borrow ML algorithms to perform stability prediction. This may 

lead to a lack of innovation in feature selection and algorithmic design and restrict a further 

improvement in prediction performance. In fact, by including the physical characteristics of the 

power system into the ML algorithms, the reliability and accuracy of the prediction may be 

considerably increased. In this context, the nature of the problem will be carefully analyzed, and a 

new method will be developed in this research work. Compared to existing published research, the 

proposed method has the following advantages: (1) More stable information is included in features. 

Unlike other features used in state-of-the-art methods, the features used for prediction are derived 

considering the physical characteristics of the power system. Therefore, the developed feature is 

highly recognizable and thus can lead to a more accurate and reliable prediction. (2) Reduce the 

post-fault data collection timeframe. Given most of the ML-based methods require long post-fault 

observation windows, which postpones the stability prediction phase, the proposed method reduces 

the dependence of post-fault data, thus increase the speed of decision-making. (3) More robust to 

changes in system topology and penetration level of wind power. 

The second objective of the thesis is to develop a preventive transient stability dispatching 

approach for high wind power-integrated electrical systems. One of the difficulties in this research 

work is the unacceptable computational burden due to the uncertainty of wind energy. To solve 

this problem, an ML-based model is trained to estimate the stability level for all preconceived fault 

scenarios rapidly. In addition, a set of IM-categorized probabilistic transient stability constraints 

(PTSCs) are constructed, which enables operators to set flexible stability requirements for the 

https://www.mathworks.com/discovery/cluster-analysis.html
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system. A method to convert the PTSCs into a set of linear inequality constraints is also explored. 

Finally, a computationally efficient dispatching framework considering the economic operation 

and stability of the system is proposed. 

1.4 Organization of the Thesis  

There are five chapters in this thesis. The main topics of each chapter are as follows: 

Chapter 1 introduces the fundamental concepts of power system transient stability. Brief 

introductions to stability prediction techniques, preventive dispatch approaches, and application of 

ML in power systems are also discussed. The objective of the research is also presented in this 

chapter. 

Chapter 2 develops a novel stability index (SI). Inspired by EEAC-related studies, the developed 

index calculates the transient stability margin of power systems considering wind power dynamics. 

For this purpose, WPPs in this study are represented as a set of variable admittances, and the 

impacts of WPPs on the electromagnetic power of SGs are analyzed. Then the calculation of the 

variable admittances is introduced. Finally, a novel SI considering the dynamics of SGs and WPPs 

is put forward. The concept of instability mode (IM) will also be introduced in this chapter. 

Chapter 3 elaborates the framework of transient stability prediction. First, an 𝑆𝐼  vector is 

proposed, which is built based on the SI developed in chapter 2. The 𝑆𝐼 vector is selected as the 

feature and applied to an ML-based classifier algorithm for transient stability prediction. 

Specifically, the construction of the 𝑆𝐼  vector, the structure of the framework, the database 

generation, and training and testing of the proposed framework are expounded in this chapter. The 

proposed method is tested on an IEEE 68- and 300- bus system, and its performances are compared 

with previous methods. In addition, the sensitivity of the proposed framework is analyzed with 

respect to practical problems. 

Chapter 4 puts forward an hour-ahead probabilistic transient stability-constrained power 

dispatching method for power systems under a high inclusion of wind power. In this chapter, the 

difficulties in this topic are analyzed, followed by the solving ideas. First, an ML-based model is 

trained to predict the critical clearing time (CCT) and instability mode (IM) for all preconceived 

fault scenarios. The training and testing process of the model is also illustrated. In addition, a set 



11 

 

of IM-categorized probabilistic transient stability constraints (PTSCs) are constructed. Based on 

the predictions, the system operation plan is assessed with respect to the PTSCs. Next, the method 

to transform the implicit PTSCs into explicit dispatching constraints is expounded. By this means, 

the dispatch is rescheduled to ensure the required system stability is met at an economical operating 

cost. The proposed approach is validated on IEEE 68- and 300-bus test systems with a high level 

of wind power penetration, and compared to a newly developed method.  

Finally, the conclusions and the suggestions for future works are presented in Chapter 5. 
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2 A Novel Transient Stability Index 

2.1 Introduction  

The development of the ML techniques makes online transient stability prediction using real-

time synchronized data obtained by PMU possible [17], [56], [60], [66]. Generally, ML-based 

techniques require a large set of labelled data obtained by offline simulations for model training, 

during which the diverse scenarios that can take place in power systems are enumerated. Notably, 

these prediction methods have advantages in terms of calculation speed and are more adaptable to 

bulk power systems in this respect.  

However, most of the existing ML applications in this area directly borrow ML algorithms and 

use the data directly obtained from PMU to perform stability prediction. There is a lack of 

innovation in feature selection and problem modelling. In the presence of the high penetration of 

wind powers, these prediction approaches may be confronted with severe dilemmas, as explored 

below. 

First, the output of wind power plants (WPPs) can vary both temporally and spatially [65], which 

exponentially increases the possible system pre-fault operation scenarios and imposes multisource 

uncertainties to the overall system dynamics [58]. Consequently, extensive training data may be 

required to cope with the combination of all possible uncertainties in power systems, and as such, 

the computation time explodes [58]. Handling a high volume of data entails more sophisticated 

prediction models and a larger number of features. In addition, it may boost the dimensionality of 

the input space and further increases the chance of overfitting and affects the overall performance 

[104]. However, an algorithm that demands massive offline data restricts the updating process of 

the prediction models. Consequently, the generalization ability of such prediction models is 
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restricted, and the deficiencies noted may impede the application of ML-based methods in real-

life projects. 

In addition, exploring informative and discriminative features is crucial for ML-based methods 

to reach reliable prediction models. As uncertainties of the system increase, existing features such 

as bus voltages [17], [56], [60], [66], which are obtained via PMU measurements, may no longer 

be so useful. A few post-fault samples of these raw data may be unable to intuitively reflect the 

effects of dispersed WPPs and their uncertainties on system dynamics, as several possible 

combinations of uncertainties may lead to similar values. Interpreting these raw data into derived 

features that better represent the underlying problem can help improve model accuracy on test 

data. 

Moreover, most of the ML-based studies mentioned above utilize post-fault data obtained after 

fault clearance for stability prediction, which postpones the decision-making time. Considering 

new advancements in PMU development, measurement data are now reliable and consistent during 

transients [58]. Therefore, the reduction of these data might be of interest when considering the 

importance of quick action against instability. 

In fact, by including the physical characteristics of the power system into the ML algorithms, 

the reliability and accuracy of the prediction can be increased. To this end, a novel transient 

stability index (SI) is developed, in which WPPs are represented as variable admittances to be 

integrated into an equivalent network model during the transients. To calculate the potential and 

kinetic energies of a power system without integral operation, a short-term terminal voltage 

recovery trajectory is derived for each WPP. In this way, the effects of WPPs on the kinetic and 

potential energies of a system are calculated after disturbances. The derivation and validation of 

the SI  is introduced in this chapter. It is worth noting that the SI will be extended to an 𝑆𝐼 vector 

that will be used as a feature for stability prediction in Chapter 3. 

2.2 Extended Equal Area Criterion (EEAC) 

The novel SI algorithm is inspired by the EEAC and further explored for power systems with 

WPPs. EEAC is one of the multiple TEF-related transient stability assessment methods. Unlike 

time-domain simulations (TDSs), these methods can rapidly estimate the stability margin of a 

conventional power system under a series of preconceived faults. Therefore, they are prevailing in 



14 

 

fast contingency screening and comparing the relative stability of a system under various 

contingencies. These methods have been widely discussed since 1980s and have played an 

important role in transient stability assessment [28]–[42], [105], [106].  

The EEAC is developed for a system with 𝑛 synchronous generators (SGs) [32], [106]. In case 

of a contingency, the SGs are grouped into two complementary sets by IM identification: the 

critical SGs that cause loss of synchronism and the remaining SGs, denoted as ΩC  and ΩR , 

respectively. The system is then reduced at the generator internal nodes to a network equivalent, 

as shown in Figure 2.1 (a), and the SGs in ΩC and ΩR are modelled by two equivalent machines so 

that each represents the dynamics of the corresponding machines within a partial center of angles. 

The system is further reduced to a one-machine-infinite-bus (OMIB) system, as shown in Figure 

2.1 (b). The mapping of the equivalent OMIB under such clustering is given by [32], [106]: 
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...
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𝐸𝑚

~
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~
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OMIB system
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(a) (b)
 

Figure 2.1: An equivalent network of an n-machine power system during a loss of synchronism. 
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 (2.6) 

𝑀𝑇 = 𝑀𝐶+𝑀𝑅 (2.7) 
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where 

𝛿𝑖: rotor angle of SG𝑖, 

𝑀𝑖: inertia constant of SG𝑖, 

𝑃𝑖: electric power of SG𝑖, 

𝑃𝑚𝑒𝑐ℎ,𝑖: mechanical power of SG𝑖, 

𝛿𝐶: rotor angle of the equivalent SG in ΩC, 

𝑀𝐶: inertia constant of the equivalent SG in ΩC, 

𝛿𝑅: rotor angle of the equivalent SG in ΩR, 

𝑀𝑅: inertia constant of the equivalent SG in ΩR, 

𝛿: rotor angle of the equivalent OMIB system, 

𝑀: inertia constant of the equivalent OMIB system, 

𝑃: electric power of the equivalent OMIB system, 

𝑃𝑚𝑒𝑐ℎ: mechanical power of the equivalent OMIB system, 

𝜔: angular speed of rotor, 

𝜔0: synchronous speed. 

With an additional simplification for machines within ΩC and ΩR [32]: 
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𝛿𝑖 ≈ 𝛿𝐶  | ∀𝑖 ∈ ΩC ,   𝛿𝑗 ≈ 𝛿𝑅 | ∀𝑗 ∈ ΩR (2.12) 

 

The active power output of SG𝑖 can be expressed by [106]: 

𝑃𝑖 = Re(𝐸⃗ 𝑖𝐼 𝑖
∗) =  𝐸𝑖𝜺𝑖

TRe( 𝒀CC)𝑬C + 𝐸𝑖𝜺𝑖
T[sin 𝛿 Im( 𝒀𝐶𝑅) + cos 𝛿 Re( 𝒀𝐶𝑅)]𝑬𝑅 (2.13) 

 

where 

𝐸⃗ 𝑖: complex voltage of the internal node of SG𝑖, 

𝐼 𝑖: complex current injections at the internal node of SG𝑖,  

𝐸𝑖: magnitude of 𝐸⃗ 𝑖, 

superscript ∗: conjugate transpose, 

𝜺𝑖: standard basis in ℝ|ΩC|, 

 𝒀𝐶𝐶: admittance matrix of nodes in ΩC, 

 𝒀𝐶𝑅: mutual admittance matrix between nodes in ΩC and ΩR, 

𝑬⃗⃗ 𝐶: complex voltage column vector of internal nodes of SGs in ΩC, 

𝑬⃗⃗ 𝑅: complex voltage column vector of internal nodes of SGs in ΩR, 

𝑬𝐶: column vector that includes the magnitudes of each element in 𝑬⃗⃗ 𝐶, 

𝑬𝑅: column vector that includes the magnitudes of each element in 𝑬⃗⃗ 𝑅,  

Note both  𝒀𝐶𝐶  and  𝒀𝐶𝑅  are extracted from the equivalent network shown in Figure 2.1 (a). 

Likewise, 𝑃𝑗  can be expressed similarly. For simplicity, 𝑬𝐶 , 𝑬𝑅 , and 𝑃𝑚𝑒𝑐ℎ  are assumed to 

maintain their steady-state values during transients [32]. Thus, 𝑃 in (2.11) can be obtained by 

(2.14)–(2.17) [106]: 

𝑃 = 𝑃const + 𝑃𝑚𝑎𝑥sin (𝛿 − 𝛾) (2.14) 

𝑃const =
𝑀𝑅

𝑀𝑇
𝑬𝐶

TRe( 𝒀CC)𝑬𝐶 +
𝑀𝐶

𝑀𝑇
𝑬𝑅

TRe( 𝒀𝑅𝑅)𝑬𝑅 
(2.15) 

𝑃𝑚𝑎𝑥 = √(
𝑀𝑅 − 𝑀𝐶

𝑀𝑇
𝑬𝐶

TRe( 𝒀𝐶𝑅)𝑬𝑅)2 + (𝑬𝑅
TIm(𝒀𝑅𝐶)𝑬𝐶)2 

(2.16) 
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γ = −arctan

𝑀𝑅 − 𝑀𝐶

𝑀𝑇
𝑬𝐶

TRe( 𝒀𝐶𝑅)𝑬𝑅

𝑬𝑅
TIm(𝒀𝑅𝐶)𝑬𝐶

 

(2.17) 

 

where 

𝑃const, 𝑃𝑚𝑎𝑥 and 𝛾: constants, and the derivations are introduced in [106], 

 𝒀𝑅𝑅: admittance matrix of nodes in ΩR, 

 𝒀𝑅𝐶: mutual admittance matrix between nodes in ΩR and ΩC. 

Then, the “accelerating area” and “decelerating area” of the equivalent OMIB system, which 

respectively correspond to the kinetic and potential energies of the system, are calculated by: 

𝐴𝑎𝑐𝑐 = ∫ (𝑃𝑚𝑒𝑐ℎ

𝛿(𝑡cl)

𝛿(𝑡f)

− 𝑃𝒟)𝑑𝛿 

=(𝑃𝑚𝑒𝑐ℎ − 𝑃const𝒟)(𝛿(𝑡  ) − 𝛿(𝑡f)) + 𝑃max𝒟
(cos(𝛿(𝑡  ) − 𝛾𝐷) − cos(𝛿(𝑡  ) − 𝛾𝒟)) 

(2.18) 

𝐴𝑑𝑒𝑐 = ∫ (𝑃𝒮

𝛿(𝑡𝑢)

𝛿(𝑡𝑐𝑙)

− 𝑃𝑚𝑒𝑐ℎ)𝑑𝛿 

=(𝑃const𝒮 − 𝑃𝑚𝑒𝑐ℎ)(𝛿(𝑡𝑢) − 𝛿(𝑡  )) + 𝑃max𝒮
cos(𝛿(𝑡  ) − 𝛾𝒮) − 𝑃max𝒮

cos(𝛿(𝑡u) − 𝛾𝒮) 

(2.19) 

 

where 

𝑡f: fault inception time, 

𝑡  : fault clearance time, 

𝑡u: time instant when the system reaches the unstable equilibrium point. 

Subscripts 𝒟 and 𝒮  represent the system electric quantities during the fault and after the fault 

clearance, respectively. In this case, the stability of the system can be judged by comparing the 

difference between kinetic and potential energy against a predefined threshold value. 

It is worth noting that these stability assessment methods [28]–[42], including EEAC, were 

initially developed for rapid contingency screening instead of transient stability prediction. With 

the availability of the PMUs, some of these methods have great potential to play a key role in 

stability prediction. For example, in previous studies, 𝛿(𝑡  )  used in (2.18) and (2.19) was 

calculated using algorithms like higher-order Taylor series. With the advancements in PMU-relate 

techniques, measurement data are now reliable and consistent during transients. Therefore, real 

time rotor angles of the equivalent OMIB system, including 𝛿(𝑡f) and 𝛿(𝑡  ), can be obtained or 
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estimated from PMU data. Beyond these, 𝛿(𝑡u) can be calculated immediately based on system 

information at 𝑡  + , as introduced in [106]. As a result, (2.18) and (2.19) can be calculated 

immediately after fault clearance without integral operation, thus providing valuable information 

for stability prediction. In the next section, the study will be further explored for power systems 

with WPPs. 

2.3 Derivation of a Novel Stability Index 

To address the challenges faced by SI calculations caused by WPP dynamics, a novel algorithm 

inspired by the EEAC for calculating SI is introduced in this section. First, the calculation of a set 

of virtual variable admittances that reshape the system and model the dynamic behavior of WPPs 

is introduced in Section 2.3.1. Impacts of WPPs on the electromagnetic power of SGs are then 

analyzed. Next, the short-term terminal voltage recovery of WPPs is derived in Section 2.3.2, and, 

consequently, a novel SI considering the dynamics of WPPs is put forward. 

2.3.1 Equivalence of WPPs 

The principle of variable admittances is used to eliminate WPP nodes while retaining their 

transient effects on SGs. Consider a network with two SGs and one WPP, as shown in Figure 2.2, 

which is reduced at the SG internal nodes and point of intersection (POI) of the WPP in the 

equivalent network model. Because 𝐼 1 and   𝐼 2 should be consistent with the corresponding values 

after WPP elimination, the equivalent admittances 𝑌1
′ and 𝑌2

′ are obtained as: 

𝐸1
~

𝐸2

𝑌1

𝑌2

𝐼 1

𝐼 2 𝐼 2

𝐼 1
𝑌1
′

~
𝑌2
′

𝐸1
~

~
𝐸2

𝑉𝑤

 

Figure 2.2: The principle of variable admittances. 

𝑌1
′ = (1 −

𝑉⃗ 𝑤

𝐸⃗ 1
)𝑌1 

(2.20) 
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𝑌2
′ = (1 −

𝑉⃗ 𝑤

𝐸⃗ 2
)𝑌2 

(2.21) 

 

Similarly, consider a system with 𝑛 SGs and 𝑛′ WPPs; an electrical equivalent of the system is 

constructed, as shown in Figure 2.3 (a). Generally, the wind generators (WGs) in WPPs are not 

synchronously connected to the grid, and thus do not face rotor angle instability. However, the 

power output from these WPPs during transient conditions is affected by network voltage, which 

in turn affects the transient stability of the system [58]. In dynamic coherency determination 

studies [107], [108], each non-SG bus, including POIs [108], is appended to an associated SG 

coherent group to form a coherent area following a disturbance. This is determined by the rate of 

change of voltage angle or frequency-deviation signals of each bus [108]. Accordingly, the POIs 

with connected WPPs are divided into two complementary clusters—the critical subset ΩG and the 

remaining subset  ΩH, which are appended to the ΩC and ΩR groups, respectively—as shown in 

Figure 2.3 (a). 

Equivalent

Network

... ...

1WPP WPPm 1WPPm+
WPPn

 𝑽1  𝑽𝑚  𝑽𝑚 +1  𝑽  

...

𝐸𝑚+1

𝐸 

...
𝐸1

𝐸𝑚
~

~~

~
ΩC

Ω𝑅

ΩHΩG

 

(a) 

New

Equivalent

Network

𝑌1
′

𝑌𝑚
′

𝑌𝑚+1
′

𝑌 
′

...

𝐸𝑚+1

𝐸 

...

𝐸1

𝐸𝑚
~

~~

~
ΩC

Ω𝑅

 

(b) 

Figure 2.3: Equivalence a power system incorporating WPPs. 
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The equivalent network shown in Figure 2.3 (a) is given by:  

[
 
 
 
 𝑰
 
𝐶

𝑰 𝐺

𝑰 𝑅

𝑰 𝐻]
 
 
 
 

= [

𝒀𝐶𝐶 𝒀𝐶𝐺 𝒀𝐶𝑅 𝒀𝐶𝐻

𝒀𝐺𝐶 𝒀𝐺𝐺 𝒀𝐺𝑅 𝒀𝐺𝐻

𝒀𝑅𝐶 𝒀𝑅𝐺 𝒀𝑅𝑅 𝒀𝑅𝐻

𝒀𝐻𝐶 𝒀𝐻𝐺 𝒀𝐻𝑅 𝒀𝐻𝐻

]

[
 
 
 
 𝑬⃗⃗
 
𝐶

𝑽⃗⃗ 𝐺

𝑬⃗⃗ 𝑅

𝑽⃗⃗ 𝐻]
 
 
 
 

 

(2.22) 

where 

𝑰 𝐶: complex current column vector of SG internal nodes in ΩC, 

𝑰 𝑅: complex current injection column vector of SG internal nodes in ΩR, 

𝑽⃗⃗ 𝐺: complex voltage column vector of POIs of WPPs in ΩG, 

𝑰 𝐺: complex current injection column vector of POIs of WPPs in ΩG, 

𝑽⃗⃗ 𝐻: complex voltage column vector of POIs of WPPs in and ΩH, 

𝑰 𝐻: complex current injection column vector of POIs of WPPs in ΩH, 

𝒀𝐶𝐻 and 𝒀𝐻𝐶: the mutual admittance matrix between nodes in sets ΩC and ΩH; 

𝒀𝐺𝐺: admittance matrix of nodes in ΩG, 

𝒀𝐺𝐶  and 𝒀𝐶𝐺: mutual admittance matrix between nodes in sets ΩG and ΩC, 

𝒀𝐺𝑅 and 𝒀𝑅𝐺: mutual admittance matrix between nodes in sets ΩG and  ΩR, 

𝒀𝐻𝐻: admittance matrix of WPPs nodes in ΩH, 

𝒀𝐻𝐺  and 𝒀𝐺𝐻: mutual admittance matrix between nodes in sets ΩH and ΩG; 

𝒀𝐻𝑅 and 𝒀𝑅𝐻: mutual admittance matrix between nodes in sets ΩR and ΩH. 

Similar to Figure 2.2, a series of variable admittances that act as additional self-impedance of 

each internal node can be built to simulate the transient behavior of WPPs, as shown in Figure 2.3 

(b), during which the network in Figure 2.3 (a) is first reduced at the generator internal nodes and 

POIs, and the principle of variable admittance introduced in Figure 2.2 is then applied. Thus, the 

equivalent network of Figure 2.3 (a) is rebuilt; the WPP nodes are eliminated and the connections 

between each SG remain the same. The current-injection model of the system in Figure 2.3 (b) is 

given by: 

[
𝑰 𝐶

𝑰 𝑅
] = [

𝒀𝐶𝐶
′

 𝒀𝑅𝐶

 𝒀𝐶𝑅

𝒀𝑅𝑅
′ ] [

𝑬⃗⃗ 𝐶

𝑬⃗⃗ 𝑅
] 

(2.23) 

 



21 

 

where 𝒀𝐶𝐶
′  and 𝒀𝑅𝑅

′  are the admittance matrices of nodes in ΩC and in ΩR after eliminating WPP 

nodes from the equivalent OMIB system, respectively, and they are calculated by: 

𝒀𝐶𝐶
′ =  𝒀𝐶𝐶 + diag[𝑌1

′, . . . , 𝑌𝑚
′ ] (2.24) 

𝒀𝑅𝑅
′ =  𝒀𝑅𝑅 +  diag[𝑌𝑚+1

′ , . . . , 𝑌 
′] (2.25) 

 

and 𝑌1
′, . . . , 𝑌𝑚

′ , 𝑌𝑚+1
′ , . . . , 𝑌 

′ are variable admittances. Similar to (2.20)–(2.21), these admittances 

can be calculated by: 

𝑌𝑖
′ = ∑ [(1 −

𝑉⃗ 𝑔

𝐸⃗ 𝑖
)𝑌𝑖𝑔] + ∑ [(1 −

𝑉⃗ ℎ

𝐸⃗ 𝑖
)𝑌𝑖ℎ]

ℎ∈ΩH𝑔∈ΩG

， i = 1, 2… , 𝑛 ∈ (ΩC ∪ ΩR)  
(2.26) 

where 

𝑌𝑖𝑔: mutual admittance between 𝑖 and 𝑔, 

𝑌𝑖ℎ: mutual admittance between 𝑖 and ℎ. 

It can be seen from (2.26) that the variable admittances can reflect the effect of uncertainties of 

wind power; as the voltages of SG internal nodes and POIs fluctuate with wind power generation, 

the admittances change accordingly.  

Therefore, during fault-free conditions, the values of the variable admittances vary at all times 

due to the wind speed uncertainties. During transients, the wind speeds of each WPP are assumed 

to remain constant [109] (assuming they start when a fault occurs 𝑡f and end at 1–5s after fault 

clearance 𝑡  ); thus, the values these variable admittances are determined by the pre-fault 

conditions and the transient process of the system, including the fault-related change of system 

states, variables, and topology, the controls on WPPs, etc. 

After the inclusion of the variable admittances shown in Figure 2.3 (b), 𝑃𝑖 in (2.13) and 𝑃 in 

(2.14)–(2.17) are re-written in which  𝒀𝐶𝐶 ,  𝒀𝑅𝑅  are replaced by 𝒀𝐶𝐶
′  and 𝒀𝑅𝑅

′ , respectively. 

Notably, 𝑃 is expressed by: 

𝑃 = 𝑃variable + 𝑃𝑚𝑎𝑥sin (𝛿 − 𝛾) (2.27) 

𝑃variable =
𝑀𝑅

𝑀𝑇
𝑬𝐶

TRe(𝒀𝐶𝐶
′ )𝑬𝐶 +

𝑀𝐶

𝑀𝑇
𝑬𝑅

TRe(𝒀𝑅𝑅
′ )𝑬𝑅 

(2.28) 

javascript:;
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𝑃𝑚𝑎𝑥 = √(
𝑀𝑅 − 𝑀𝐶

𝑀𝑇
𝑬𝐶

TRe( 𝒀𝐶𝑅)𝑬𝑅)2 + (𝑬𝑅
TIm(𝒀𝑅𝐶)𝑬𝐶)2 

(2.29) 

γ = −arctan

𝑀𝑅 − 𝑀𝐶

𝑀𝑇
𝑬𝐶

TRe( 𝒀𝐶𝑅)𝑬𝑅

𝑬𝑅
TIm(𝒀𝑅𝐶)𝑬𝐶

 

(2.30) 

where 𝑃variab e is the counterpart of 𝑃 onst in (2.15), while the 𝑃variab e is a variable here due to 

the variability of 𝒀𝐶𝐶
′  and 𝒀𝑅𝑅

′ . 

From (2.24)–(2.25), 𝒀𝐶𝐶
′  and 𝒀𝑅𝑅

′  are composed of self and mutual admittances of the SGs and 

the variable admittances; hence, for the WPP-integrated power system, the electromagnetic power 

of each SG includes the amount exchanged among the SGs as well as among the SGs and the 

WPPs. Similar to (2.12), because the dynamics of the voltage angles of buses within one coherent 

group are similar [108], an assumption is made for the unstable cases: during the period after 𝑡  , 

it has, 

𝜃𝑔 ≈ 𝛿𝐶  |  ∀𝑔 ∈ ΩG , 𝜃ℎ ≈ 𝛿𝑅 | ∀ℎ ∈ ΩH (2.31) 

where 𝜃𝑔 and 𝜃ℎ represent the voltage angle of POIs of 𝑔 and ℎ, respectively; thus, (2.26) can be 

further simplified. Therefore, the variables left in 𝑃 are 𝛿 and 𝑽, where 𝑽 = [
𝑽𝐺

𝑽𝐻
], and 𝑽𝐺 and 𝑽𝐻  

are matrices that include the magnitudes of each element in 𝑽⃗⃗ 𝐺 and 𝑽⃗⃗ 𝐻, respectively. Because 𝛿 is 

the integration variable of the integration of (2.18)–(2.19), if the 𝛿–𝑽 relationship of the post-fault 

function is obtained, then the antiderivative of (2.18) and (2.19) can be derived, which leads to the 

calculation of kinetic and potential energies without integral operation. 

2.3.2 Post-Fault Recovery of the Voltages of the POIs 

During the fault period, 𝑡f to 𝑡𝑐𝑙, the dip value of 𝑽 is obtainable from PMUs and can be directly 

used for kinetic energy calculation. Thereby, the remaining challenge to calculate potential energy 

is to derive the potential 𝑽 - 𝛿  relationship during 𝑡𝑐𝑙  to 𝑡𝑢 , defined as 𝑡𝑐𝑢 . Because the WPP 

control strategy affects the 𝑽 - 𝛿 relationship in 𝑡𝑐𝑢, calculations are conducted with respect to the 

control scheme. 
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In this study, all WGs are considered to be doubly-fed induction generators (DFIGs) due to their 

popularity among current WPPs. All WGs are assumed to have fault ride-through capability and 

remain connected during faults, and are involved in Volt/VAR control to regulate the voltage of 

their respective POIs; this is the most prevalent output control in recent North American and 

European WPPs [109]. The methodology introduced below can be modified for application to 

DFIGs under other output control situations. 

Faster-acting local controls implemented in the WG converters can provide a dynamic response 

to voltage dips. The introduction of a generator/converter model of DFIG that regulates real and 

reactive power output is reported in [25]. Denote 𝑉𝑤 as the voltage magnitude of the POI of the 

WPP𝑤. During the 𝑉𝑤 drop period, the delivery of reactive power of this WPP, 𝑄𝑤, is given priority 

by the Volt/VAR control. In other words, the active power 𝑃𝑤 remains limited while 𝑄𝑤 increases 

to support 𝑉𝑤 recovery. This control mode is generally triggered from 𝑡f and continues after fault 

clearance if 𝑉𝑤(𝑡  +) fails to recover immediately; 𝑄𝑤 then increases and remains at its maximum 

output until 𝑉𝑤 recovers. This process is illustrated in Figure 2.4, in which the WPP is in rated 

output (100 MW) before the contingency. Similar simulation results are also reported in [110] and 

[111]. 

𝑉𝑤 𝑄𝑤 𝑃𝑤

𝑡𝑐𝑙
𝑡f

 

Figure 2.4: Real power, reactive power, and terminal voltage of a Volt/VAR controlled WPP 

during and after a fault. 

The control strategy of WGs affects their regulated voltages 𝑽 and reactive power outputs 𝑸, 

which consequently influence the dynamics of the system. In light of this structure, a 𝑽  - 𝛿 
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relationship can be obtained by a derivative operator by having an idea about the transient 

characteristics of 𝑸. To this end, denote: 

  𝑉𝑤(𝑡 u)  = 𝑉𝑤(𝑡f−)    |  ∀ 𝑤 ∈ ( ΩG ∪ ΩH) and 𝑉𝑤(𝑡  +) ≥ 𝜑𝑉𝑤(𝑡f−) (2.32) 

where 𝑉𝑤(𝑡 u) represents 𝑉𝑤 during 𝑡 u, 𝑉𝑤(𝑡f−) is equal to 𝑉𝑤 at steady state, and 𝜑 is a threshold 

ratio of 𝑉𝑤(𝑡  +) to 𝑉𝑤(𝑡f−). Equation (2.32) means that 𝑉𝑤 is considered recovered immediately 

after fault clearance if 𝑉𝑤(𝑡  +) is close to its pre-fault value. Specifically, 𝜑 is set to 0.9 because 

this is the typical value to trigger the low voltage condition of Volt/VAR control in WPPs. 

Alternatively, for those 𝑉𝑤(𝑡  +) that fail to reach 𝛼𝑉𝑤(𝑡f−), according to the Volt/VAR control 

in DFIGs, the corresponding WPP would increase its reactive power output and remain at its 

maximum limitation until the voltage is restored. Hence, during 𝑡 u, the reactive outputs of those 

WPPs can be considered as: 

    𝑄
𝑤

= 𝑄̅
𝑤
    |  ∀  𝑤 ∈ (ΩG ∪ ΩH) and  𝑉𝑤(𝑡cl+) < 𝜑𝑉𝑤(𝑡f−) (2.33) 

where 𝑄̅𝑤 is the maximum reactive output of the 𝑤th WPP, which is considered as a constant and 

determined by the controllers of the WGs in the WPP [109]. 

The reactive power outputs of each WPP are constructed by: 

𝑸 = [𝑸𝐺
T   𝑸𝐻

T ]
T
 (2.34) 

where 𝑸𝐺  and 𝑸𝐻 represent reactive power injection column vectors of WPPs of sets ΩG and ΩH, 

respectively. Given (2.22), (2.26) and (2.33), 𝑸𝐺  can be derived as (2.35), where ⨂ is pointwise 

multiplication; and 𝑸𝐻 is expressed in a similar way. 

𝑸𝐺 = Im(𝑽⃗⃗ 𝐺⨂𝑰 𝐺
∗ ) = −𝑽𝐺⨂(

Im(𝒀𝐺𝐺)𝑽𝐺 + cos 𝛿 (Im(𝒀𝐺𝐻)𝑽𝐻 + Im(𝒀𝐺𝑅)𝑬𝑅)

+Im( 𝒀𝐺𝐶)𝑬𝐶 − sin𝛿(Re(𝒀𝐺𝐻)𝑽𝐻 + Re(𝒀𝐺𝑅)𝑬𝑅)
) 

(2.35) 

It can be seen from (2.35) that 𝑸 is functions of 𝑽 and 𝛿. 
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From (2.32), 𝑉𝑤 can be considered a constant value after 𝑡  if 𝑉𝑤(𝑡  +) ≥ 𝜑𝑉𝑤(𝑡f−); so, attention 

is only focus on those {𝑉𝑤 , 𝑄𝑤 | ∀  𝑤 ∈ (ΩG ∪ ΩH) and 𝑉𝑤(𝑡  +) < 𝜑𝑉𝑤(𝑡f−)} for the derivation of 

the 𝑽 - 𝛿 relationship during 𝑡 u. These voltages and reactive are constructed by: 

𝑽′ = [𝑉1 ⋯𝑉𝑤 ⋯𝑉  ]T                   |  ∀ 𝑤 ∈ (ΩG ∪ ΩH) and 𝑉𝑤(𝑡  +) < 𝜑𝑉𝑤(𝑡f−)  (2.36) 

𝑸′(𝑽, 𝛿) = [𝑄1 ⋯𝑄𝑤 ⋯𝑄  ]T    |  ∀ 𝑤 ∈ (ΩG ∪ ΩH) and 𝑉𝑤(𝑡  +) < 𝜑𝑉𝑤(𝑡f−) (2.37) 

During 𝑡𝑐𝑢, (2.32) shows that: 

∆𝑉𝑤 = 0   |∀ 𝑤 ∈ 𝐺 ∪ 𝐻   and   𝑉𝑤(𝑡  +) ≥ 𝜑𝑉𝑤(𝑡f−) (2.38) 

and ,thus, during 𝑡𝑐𝑢, the 𝑸′ in (2.37) can be re-written as 𝑸′(𝑽′, 𝛿), where  

𝑸′(𝑽′, 𝛿) = [𝑄̅1 ⋯𝑄̅𝑤 ⋯𝑄̅  ]T  | ∀ 𝑤 ∈ (ΩG ∪ ΩH) and 𝑉𝑤(𝑡  +) < 𝜑𝑉𝑤(𝑡f−) (2.39) 

Further, (2.33) shows that 𝑸′ in (2.36) is a constant column vector during 𝑡 u and, thus, ignoring 

higher order terms during 𝑡 u leads to: 

[
𝜕𝑸′(𝑽′, 𝛿)

𝜕(𝑽′, 𝛿)
]|

𝑽 =𝑽 (𝑡cl+),   𝛿=𝛿(𝑡cl)

[
∆𝑽′

∆𝛿
] = 𝟎 

(2.40) 

where [
𝜕𝑸 (𝑽 ,𝛿)

𝜕(𝑽 ,𝛿)
] is a Jacobian matrix. Thus, from (2.40), a linear relation between 𝑽′ and 𝛿 can be 

obtained by (2.41) during 𝑡𝑐𝑢.  

∆𝑽′ = 𝑲′∆𝛿 (2.41) 

where 𝑲′ is linear coefficient between ∆𝑽′ and ∆𝛿 during 𝑡 u: 

𝑲′ = − [
𝜕(𝑸′)

𝜕(𝑽′)
]

−1

[
𝜕(𝑸′)

𝜕𝛿
]|

𝑽 =𝑽 (𝑡cl+),   𝛿=𝛿(𝑡cl)

 
(2.42) 

For generalization, 𝑽(𝑡𝑐𝑢)  can be written as: 
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𝑽(𝑡𝑐𝑢) = [𝑽𝐺
T(𝑡  +)  𝑽𝐻

T (𝑡  +)]
T
+ [𝑲𝐺

T   𝑲𝐻
T ]

T
(𝛿 − 𝛿  ) 

(2.43) 

where [𝑲𝐺
T   𝑲𝐻

T ]
T
 is the linear coefficient between ∆𝑽 and ∆𝛿 during 𝑡𝑐𝑢. In particular: 

𝑉𝑤(𝑡  +)  = 𝑉𝑤(𝑡f−),  𝐾𝑤 = 0    |  ∀ 𝑤 ∈ (ΩG ∪ ΩH), 𝑉𝑤(𝑡  +) ≥ 𝜑𝑉𝑤(𝑡f−) (2.44) 

and other  𝐾𝑤 in [𝑲𝐺
T   𝑲𝐻

T ]
T
 are calculated from (2.42). Relying on (2.42), the 𝑽 - 𝛿 relationship is 

obtained. A novel SI, derived from that, is proposed next. 

2.3.3 The Proposed SI  

Given (2.14), (2.15), (2.24)–(2.31), and (2.43), the integrals in (2.45) and (2.46), which 

respectively correspond to the kinetic and potential energies of a system after fault clearance 

considering WPPs, can be obtained: 

𝐴𝑎𝑐𝑐 = ∫ (𝑃𝑚𝑒𝑐ℎ
𝛿(𝑡cl)

𝛿(𝑡f)
− 𝑃𝒟(𝛿))𝑑𝛿 = 𝐴𝑎𝑐𝑐1 + 𝐴𝑎𝑐𝑐2  (2.45) 

𝐴𝑑𝑒𝑐 = ∫ (𝑃𝒮(𝛿)
𝛿(𝑡u)

𝛿(𝑡cl)
− 𝑃𝑚𝑒𝑐ℎ)𝑑𝛿 = 𝐴𝑑𝑒𝑐1 + 𝐴𝑑𝑒𝑐2  (2.46) 

where 

𝐴𝑎𝑐𝑐1 = (𝑃𝑚𝑒𝑐ℎ − 𝑃𝑐𝑜 𝑠𝑡𝒟)(𝛿(𝑡  ) − 𝛿(𝑡f))

+ 𝑃max𝒟
(cos(𝛿(𝑡  ) − 𝛾𝒟) − cos(𝛿(𝑡  ) − 𝛾𝒟)) 

(2.47) 

𝐴𝑎𝑐𝑐2 = 𝜉1(𝛿(𝑡  ) − 𝛿(𝑡f)) + 𝜉2(sin 𝛿(𝑡  ) − sin 𝛿(𝑡f)) − 𝜉3(cos 𝛿(𝑡  ) − cos 𝛿(𝑡f)) (2.48) 

𝐴𝑑𝑒𝑐1 = (𝑃𝑐𝑜 𝑠𝑡𝒮 − 𝑃𝑚𝑒𝑐ℎ)(𝛿(𝑡𝑢) − 𝛿(𝑡  )) + 𝑃max𝒮
cos(𝛿(𝑡  ) − 𝛾𝒮)

− 𝑃max𝒮
cos(𝛿(𝑡u) − 𝛾𝒮) 

(2.49) 

𝐴𝑑𝑒𝑐2 = 𝜂1(𝛿(𝑡u) − 𝛿(𝑡  )) + 𝜂2(𝛿
2(𝑡u) − 𝛿2(𝑡  ))

+ (𝜂3 + 𝜂6)(sin 𝛿(𝑡u) − sin 𝛿(𝑡  ))

+ (𝜂4 + 𝜂5)(cos 𝛿(𝑡u) − cos 𝛿(𝑡  ))

+ 𝜂5(𝛿(𝑡u)sin 𝛿(𝑡u) − 𝛿(𝑡  ) sin 𝛿(𝑡  ))

− 𝜂6(𝛿(𝑡u)cos 𝛿(𝑡u) − 𝛿(𝑡  )cos 𝛿(𝑡  )) 

(2.50) 
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where the subscripts 𝒟  and 𝒮 , 𝛾 , 𝑃𝑐𝑜 𝑠𝑡 , 𝑃𝑚𝑎𝑥  have been defined in Section 2.2; 𝜉1—𝜉3  and 

𝜂1—𝜂6 in (2.48) and (2.50) are constants, with detailed equations given in Appendix A. The SI, 

which considers the dynamics of WPPs on the transient stability, is then given as: 

𝑆𝐼 =
𝐴𝑑𝑒𝑐 − 𝐴𝑎𝑐𝑐

𝐴𝑎𝑐𝑐
 

(2.51) 

To calculate 𝜉1—𝜉3 and 𝜂1—𝜂6, and subsequently (2.47)–(2.51), the following data are required: 

(1) System admittance matrix at 𝑡f+ and 𝑡  +, 

(2) Rotor angles of each SG at 𝑡f and 𝑡  , 

(3) Pre-fault internal voltage magnitudes of each SG, and 

(4) Voltages of each POI at 𝑡f+ and 𝑡  +. 

In the studies conducted in this thesis, the required information in (1)–(4) is assumed to be 

obtainable from PMU measurements. In fact, the real-time system admittance is fairly available to 

operators, and PMU-based fault location detection is introduced in [112]–[114], and online event 

and fault type detection are reported in [115], [116]. These methods are determining factors to 

obtain values of (1). In addition, the pre-fault internal voltage of the SGs, the voltages of the POIs, 

and the rotor angles during and after the clearance of faults can be estimated from PMU 

measurements [51], [117]. Therefore, the 𝑆𝐼 can be calculated immediately after 𝑡  +. Based on 

(2.51), the value of the 𝑆𝐼  correlates with the stability margin of the post-fault wind power-

connected network. 

2.4 Numerical Simulations 

This section aims to assess the proposed SI. To this end, two assessment tests are carried out: 

(1) the validity of the virtual variable admittances developed in Section 2.3. 

(2) The effect of online misidentification of the IM on the accuracy of the SI.  

The reason to set (2) is that the derivation in Section 2.3 is on a prerequisite that IM is correctly 

identified in real-time for each contingency. Therefore it is also essential to check the effects of 

misidentification of IM on the calculation of SI. 
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2.4.1 Test System Description 

A modified version of IEEE 16-machine 68-bus system with 9 DFIG-based WPPs, shown in 

Figure 2.5, is used to evaluate the effectiveness of the proposed SI.. The 9 WPPs are installed at 

buses 18, 22, 25, 29, 31, 32, 36, 41, and 42 in the modified 68-bus system. All SGs in the system 

are detailed 6th-order models and equipped with DC4B excitation systems. IEEEST stabilizers 

and IEESGO governors are installed for each SG. Therefore, the internal voltage magnitude and 

mechanical power of SGs vary during the transient simulations. It might be helpful to mention that 

these values are assumed to remain constant for simplifying the derivations in Sections 2.2 and 

2.3. Such a simplification is considered inside the developed method, but not the stability 

simulations. In addition, each WPP is modeled by an aggregated 1.5 MW DFIG model. All of 

these dynamic models are available in [25] and their parameters are given in [118] and Appendix 

B. The computer used in the simulations featured an Intel 3.4-GHz CPU with 16 GB of RAM. 
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Figure 2.5: Modified IEEE 68-bus test system. 

2.4.2 Generation of the Test Cases 

A variety of test cases are required to assess the proposed SI. The test cases are obtained from 

Monte Carlo TDSs. In each simulation, the system admittance matrix at 𝑡f+ and 𝑡  +, rotor angles 

of each SG at 𝑡f and 𝑡  , pre-fault internal voltage magnitudes of each SG, and voltages of each 

POI at 𝑡f+ and 𝑡  +, as discussed in Subsection 2.3.3, are used to calculate the SI. To carry out the 



29 

 

Monte Carlo TDSs, reasonable uncertainty models, including outputs of WPPs, load levels, and 

fault locations and durations, are essential.  

In practice, these uncertainty models can be statistically estimated from the corresponding 

historical observations. In this study, the generation of each WPP, represented by 24 probability 

density functions (PDFs) that correspond to 24 hours of a day, are estimated using Gaussian kernels 

in a non-parametric way using hourly historical data from [119]. The same method is applied to 

each load where the historical data are retrieved from [120]. Thus, before running a dynamic 

simulation for a specific scenario, the hour of the day is sampled randomly, and then each load and 

WPP outputs are sampled from its PDF of the sampled hour, and optimal power flow is then solved 

to balance the load and determine the output of each SG. Further, because SGs in the test systems 

are considered to be conventional power plants with aggregated units, the parameters of each SG 

are then adjusted based on their updated output. In brief, by increasing wind power penetration, 

some units in each conventional power plant are turned off, so the electrical parameters of each 

SG are adjusted accordingly, as discussed in [58]. Fault duration is randomly selected to be 

between 6 and 15 cycles [17]. The faults are assumed to be permanent and are cleared by switching 

off the faulted line. Moreover, faults are randomly applied to transmission lines for each simulation. 

Only three-phase faults are considered in this study, though the proposed method is capable of 

handling other fault types as well. The above procedures are realized by a Python-based interface 

and the Monte Carlo simulations are carried out in PSS/E software, which provides the Python 

application programming interface (API). 

Different wind power penetrations are also set for the system for testing. Wind power installed 

capacity ratio (WIC) in the system is set to 10, 30 and 50% of the total available capacity of SGs. 

These scenarios are denoted as WIC0, WIC30, and WIC50%. Finally, for each WIC scenario, 

7000 simulations are carried out in the system, as show in Table 2.1. 

Table 2.1: Simulation data of the test system for different WIC scenarios. 

Wind scenarios Number of the simulated cases 

WIC10% 7000 

WIC30% 7000 

WIC50% 7000 
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2.4.3 Assessment of the Proposed SI  

Two assessment tests are carried out in this Section: (1) the validity of the virtual variable 

admittances developed in Section 2.3 and (2) the effect of online misidentification of the IM on 

the accuracy of the SI. 

For (1), the accuracy of the 𝑆𝐼  calculated with the variable admittances is compared to the 

accuracy calculated with static pre-fault WPP-equivalent admittances. It is worth noting that, in 

the static admittance scenario, the WPPs are equivalent to static admittances whose values are 

calculated by (2.26) using the pre-fault conditions. During transients, the dynamics of the WPPs 

are ignored, i.e., the values of the WPP-equivalent admittances remain unchanged. Thus, in case 

of a contingency, the EEAC as listed in (2.1)–(2.19) and (2.51) can be directly applied to calculate 

the 𝑆𝐼. 

For (2), two different IM online identification settings are made for the two tests in (1): the IM 

is either assumed correctly identified for each case, or randomly selected from a set of patterns 

that may appear due to the fault line.  

Therefore, four settings are designed for the SI calculation, as listed in Table 2.2. The accuracy 

of the SIs obtained under the four settings is then assessed and compared with respect to different 

threshold values and WICs. For this purpose, the cases simulated on the test system for the different 

WIC scenarios are employed for the validation. For each WIC scenario, the 𝑆𝐼 value is calculated 

for the 7000 cases under the four different settings in Table 2.2. For the sake of assessment, the 

threshold value for stability prediction is increased from −1 to 1 in increments of 0.1, and cases 

with an SI value smaller (larger) than the threshold value will be predicted as unstable (stable). 

The accuracy is the ratio of the number of correctly predicted cases to the total number of cases 

(7000). The results are presented in Figure 2.6. 

It can be seen from Figure 2.6 that increasing the WIC results in a decrease in the overall 

prediction accuracy. With the proposed SI, the average stability prediction accuracy is 91.38% 

with WIC=50%, which is 2.81% lower than the case with WIC=10%. Even so, the prediction 

accuracy of the proposed SI is markedly better than those in which the variable admittances are 

replaced by static ones in the SI calculation process; the average accuracy improvement for WIC10, 

30, and 50% is 2.18, 5.17, and 8.71%, respectively. Such outcomes demonstrate the efficacy of 
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the variable admittances on modelling the dynamics of WPPs, and validate the effectiveness of the 

proposed SI for cases with high penetration of wind power. Moreover, Figure 2.6 shows that the 

accuracy is susceptible to the settings of the threshold value and, last but not least, that the 

misidentification of IM can degrade the overall accuracy. Hence, to further improve the accuracy, 

the novel framework is introduced and tested in Chapter 3. 

Table 2.2: Different settings for SI calculation. 

Settings Modelling  of WPPs IM identification 

S1 Static admittances Randomly selected 

S2 Static admittances Correctly identified 

S3 Variable admittance Randomly selected 

S4 Variable admittance  Correctly identified 
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Figure 2.6: The stability prediction accuracy of different techniques with respect to WICs for 

different threshold values. 

2.5 Summary  

In this chapter, a novel transient SI inspired by EEAC- and PMU-based techniques is presented, 

in which the dynamic behavior of wind power plants is taken into account. The proposed SI 

algorithm can be calculated right after fault clearance without differential/integral operations and 
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be applied to large-scaled WPP-connected power systems. The simulation results validated the 

effectiveness of the proposed SI, which advances the development of a novel transient stability 

prediction framework for wind energy-connected power systems. The framework is introduced in 

the next chapter. 
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3 Transient Stability Prediction of Power Systems with 

High Wind Power Penetration 

3.1 Introduction 

Taking advantage of the 𝑆𝐼 developed in Chapter 2, an 𝑆𝐼 vector, which consists of the 𝑆𝐼 

values of an overall set of instability modes (IMs) of a certain system, is developed in this chapter. 

The 𝑆𝐼 vector is then used as a feature and applied to an ensemble classifier algorithm, which 

demonstrates a superior prediction performance. This chapter starts by discussing the definition 

and identification of IM and its importance to SI calculation. This is followed by the construction 

of the 𝑆𝐼 vector and the introduction of the selected ML-technique, ensemble DT. Finally, the 

proposed solution for stability prediction is presented followed by several study cases. 

3.2 Construction of an SI Vector 

3.2.1 Instability Modes (IM) 

Instability mode (IM) is a generator grouping structure that separates SGs into two groups when 

the synchronism of the system is disturbed; the critical SGs and the remaining ones [74]. To 

visualize the concept of IM, Figure 3.1 shows the rotor angle trajectories of an unstable case 

simulated from the IEEE 68-bus system, where the critical and remaining SGs are clustered based 

on their rotor angle trajectories, whereby the IM is identified. Note that IMs are similar to coherent 

groups of generators with the main exception that they only contain two clusters of generators 

[32], [74], [106].  

It can be seen from Chapter 2 that the IM is the “reference coordinate” for calculations of SIs; 

therefore, correct IM identification is essential to SI calculation. In fact, different types of IM can 
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be triggered from a specific power system under different fault conditions, and the pattern that 

may occur is determined by system structure, fault location, fault duration, system operating 

conditions, etc. A misidentification of IM would result in erroneous 𝑆𝐼  values. However, the 

existing real-time IM identification methods require a long observation window of post-fault data, 

which may greatly delay the stability prediction time [45]. 

Remaining SGs

Critical SGs

 

Figure 3.1: An example of IM in a power system. 

3.2.2 SI Vector 

Fortunately, although it may be unfeasible to identify the IM precisely at 𝑡  +, the finite set of 

all feasible IM layouts of a certain system, ΩIM, can be easily collected from a specific power 

system either through adequate offline simulations or historical contingency records [6], [58]. 

Having ΩIM for a specific system, an 𝑆𝐼 vector, designated as 𝑺𝑰, which consists of the 𝑆𝐼 values 

of all finite sets of feasible IMs of a certain system, is constructed as  

𝑺𝑰 = [ 𝑆𝐼1  𝑆𝐼2  …  𝑆𝐼|ΩIM|]
T
 (3.1) 

This 𝑆𝐼 vector can further be used as a feature (also called a predictor) and applied to a classifier 

algorithm for transient stability prediction. This hybrid method is one of the contributions of this 

research work. 

Hence, with a pre-identified ΩIM , an 𝑆𝐼  vector can be calculated at 𝑡  +  by the proposed 𝑆𝐼 

algorithm. Taking advantage of a set of 𝑆𝐼 vectors, an ML classifier algorithm is then applied for 
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the training of a transient stability prediction model. The advantages of using the 𝑆𝐼 vectors as 

features include the following: 

(1) Features are more informative and discriminative. Each element in the column vector 

correlates with the stability margin of each IM. Therefore, the proposed method has sufficient 

potential to outperform the existing ML-based stability prediction methods in which the features 

are the unprocessed data directly obtained from PMUs [56], [60], [17], [66].  

(2) No online IM identification procedure is needed. The IM identification, known as clustering 

of the critical and remaining SGs, provides the “reference coordinate” for calculations of 𝑆𝐼𝑠, as 

an inaccurate online IM identification may lead to erroneous prediction results [32], [106]. 

However, the existing online IM identification methods require long post-fault observation 

windows, which may be impractical for real-life power systems that demand an extremely short 

time to trigger the emergency control action [44], [45]. Despite this, the ΩIM of a real-life system 

can be pre-identified by analyzing offline simulations of various disturbances during which each 

WPP can also be clustered into an associated SG coherent group as mentioned in Section 2.3.1. 

Having ΩIM  for a specific system, in case of a contingency, the SIs for all possible IMs are 

calculated using the developed algorithm in a parallel manner. Thus, an 𝑆𝐼 vector is formed, and 

no online IM identification is needed. 

(3) More reliable prediction results are achieved. In the proposed approach, each element in the 

𝑆𝐼 vector is projected into a high dimensional space to search a hypersurface that separates the 

stable and unstable cases via an ML technique. Therefore, compared with identifying the instability 

either from a conservative or optimistic 𝑆𝐼 threshold value, the classifier hypersurface trained from 

the 𝑆𝐼 vector provides a more reliable prediction [32], [42], [106]. 

3.3 Ensemble DT  

3.3.1 Ensemble Learning 

An ensemble learning technique is selected to train the stability prediction model. Ensemble 

learning combines the predictions of several individual learners to obtain better predictive 

performance over a single learner. Figure 3.2 illustrates a general structure of ensemble learning.  

https://en.wikipedia.org/wiki/Predictive_inference
https://en.wikipedia.org/wiki/Predictive_inference
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The individual learners of an ensemble model can be either trained by the same or different ML 

algorithms (e.g., SVM, ANN, DT, K-means). The former is known as a homogeneous ensemble 

model, and the latter is heterogeneous. Since this research focuses more on feature selection instead 

of ML algorithms themselves, the homogeneous type is utilized in this research. 

Individual learner 1

Individual learner 2

Individual learner N

...

Ensemble  Strategy Decision
Prediction 2

 

Figure 3.2: Ensemble learning. 

In a homogeneous ensemble model, individual learners are also called weaker learners or base 

estimators. To improve the prediction performance of the ensemble model, each individual learner 

should be “good and independent,” i.e., each of them is designed differently and works for the 

same goal. For this reason, the training and combination strategy of each individual learner should 

be carefully designed. The commonly used methods for training are introduced below. 

3.3.2 Ensemble Methods 

Two families of ensemble methods are usually distinguished: bagging and boosting. 

In bagging methods, the driving principle is to build several learners (estimators) independently 

and then to average their predictions. On average, the combined learner is usually better than any 

of the single base learner because its variance is reduced. The famous random forest algorithm is 

an extension of the bagging method.  

By contrast, in boosting methods, base learners are constructed sequentially and one tries to 

reduce the bias of the combined learner. The aim is to combine multiple individual learners to 

produce a powerful ensemble model. Adaptive boosting (AdaBoost) is one of the most successful 

and commonly used boosting algorithms developed among the boosting methods [118]. 
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In this study, an ensemble DT trained by Adaboost is employed to process the 𝑆𝐼 vectors and 

find the optimal classifiers. DT is amongst the most prevalent non-parametric supervised 

classification techniques, and an ensemble DT is a collection of multiple weighted DTs [121]. It 

might be helpful to mention that bagging or other classification techniques such as deep learning 

may also be applied to train the prediction model without loss of generality.  

The Adaboost [122] for binary classification is introduced below. Assumed we have N labelled 

examples ((𝑿1 , 𝑦1), (𝑿2 , 𝑦2)..., ((𝑿𝑁 , 𝑦𝑁)), where 𝑿𝑖  (𝑖 = 1,2, … ,𝑁) is the column vector of 

features of each sample, and 𝑦𝑖 is the label for each sample, where 𝑦𝑖 ∈ {−1,1}. The aim is to 

construct an ensemble model, ℱ(𝑿) , which maximizes the prediction accuracy. Assume 𝛤 

individual learners ℎ𝑗(𝑿) (𝑗 = 1,2, … , 𝛤) will be built at the end of the training.  

(1) Initial ℱ(𝑿) as none, 𝑖 = 1, 𝑗 = 1, and the weights of each sample equally as: 

𝜛𝑖,𝑗 =
1

𝑁
 

(3.2) 

(2) Build a new individual learner ℎ𝑗(𝑿)  that minimizes 𝜖𝑗 , the weighted sum error for 

misclassified points, where 

ℎ𝑗(·): 𝑿 →  {−1,1} (3.3) 

𝜖𝑗 = ∑ 𝜛𝑖,𝑗

𝑁

𝑖=1
 ℎ𝑗(𝑋𝑖)≠𝑦𝑖

 

(3.4) 

and set 𝜚𝑗, the weight of the new individual learner,  

𝜚𝑗 =
1

2
ln (

1 − 𝜖𝑗

𝜖𝑗
) 

(3.5) 

(3) Update the ensemble model ℱ(𝑿) and  

ℱ(𝑿) =  ℱ(𝑿) + 𝜚𝑗ℎ𝑗(𝑿) (3.6) 

(4) Update weights of each sample 𝜛𝑖,𝑗+1: 
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𝜛𝑖,𝑗+1 = 𝜛𝑖,𝑗 exp (−𝑦𝑖𝜚𝑗ℎ𝑗(𝑿𝑖))  ∀ 𝑖 = 1,2, … ,𝑁   (3.7) 

Then renormalized 𝜛𝑖,𝑗+1 such that ∑ 𝜛𝑖,𝑗+1
𝑁
𝑖 =1. Then set 𝑗 = 𝑗 + 1, go back to step (2) until 

𝑗 = 𝛤. 

The four steps above are the basic steps for training a binary ensemble classification model by 

Adaboost [122]. An illustrative explanation of Adaboost is shown in Figure 3.3. The training 

process involves incrementally building an individual learner to emphasize the instances that were 

previously misclassified. It can be seen from (3.7) that the weight of each sample is updated in 

each training iteration. In other words, according to the prediction of the latest learner, the weights 

of the mispredicted instances increased, otherwise decreased. Thus, each new learner is made by 

taking the previous learner’s mistake into account.  

The prediction of a trained ensemble model will be a weighted combination of each learner, 

ℱ(𝑿) = ∑ 𝜚𝑗ℎ𝑗(𝑿)𝛤
𝑖 . i.e., each learner has a different voting weight during the prediction, and the 

value of weight 𝜚𝑗 is depends on the performance of the learner during the training stage, as shown 

in step (2). 

Original training samples Updated training samples Updated training samples

Ensemble model

Individual Learner Individual LearnerIndividual Learner

 

Figure 3.3: An illustrative explanation of Adaboost. 
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3.4 The Proposed Solution Framework 

This section presents the structure of the proposed framework, in which an ensemble DT will be 

used to train the prediction model, and SI vector will be used as a feature. The framework is trained 

offline and be applied online. 

A database, i.e., the collection of training samples, is required for the training of the prediction 

model. In this study, the training data are generated from the offline simulations. In practice, it can 

be either generated from offline simulations or obtained from historical contingency records. As 

for the target label (correspond to 𝑦𝑖 in section 3.3.2), the final transient stability status of each 

sample is selected. It is calculated at the end of each dynamic simulation as follows [17]: 

𝜆𝜘 =
2𝜋 − Δ𝛿𝑚𝑎𝑥

2𝜋 + Δ𝛿𝑚𝑎𝑥
,   𝜘 = 1, 2 , 3, … , |Ωf| 

(3.8) 

where Δ𝛿𝑚𝑎𝑥 is the maximum rotor angle deviation between any pair of SGs at the end of the 

simulation. Ωf shows the set of all fault scenarios considered during the generation of that training 

data, and 𝜆𝜘 indicates the final stability status of the fault scenario 𝜘, in which positive values 

indicate a stable system and negative otherwise.  

The overall process of the proposed framework is shown in Figure 3.4. The generation process 

of the proposed framework consists of pre-identifying all possible IMs as the initial stage, followed 

by the databased generation as the second stage, and a model training process as the third stage. 

Note as the grey area in this flowchart highlights, the formation of an 𝑆𝐼 vector can be solved in 

parallel, which substantially reduces the computational complexity. Once the generation of the 

training database is finished, the model training is conducted, and next, the trained model is tested 

and saved for online application. 

3.5 Test and Results  

The described framework is realized by a Python-based interface that calls PSS/E software [17] 

to carry out simulations, saves the database generated, and creates the prediction model to solve 

the stability prediction problem.  
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Retrieve a scenario from Ωf and conduct domain simulation

= +1

Save 𝑆𝐼 vector 𝑆𝐼1  𝑆𝐼2 …  𝑆𝐼|ΩIM|

 
as the predictor and 𝜆𝜘 as 

the label of the 𝜘 t scenario

𝜘 < Ωf ?

End

𝜘 = 1

Receive system data, pre-identify ΩIM

Calculate 𝑆𝐼 of ΩIM t 
I based on Section 2.3.3

Calculate 𝑆𝐼 of 1st I based on Section 2.3.3

Yes

No

Train a prediction model by ensemble decision trees

Start

 

Figure 3.4: The proposed framework. 

3.5.1 Test System Description 

Modified versions of that IEEE 16-machine, 68-bus and 69-machine, 300-bus systems are used 

to perform the simulations. The data of the two systems are given in [118] and [123]. The details 

of the first system have been introduced in Section 2.4.1. The configuration of the modified 69-

machine, 300-bus system is shown in Figure 3.5, in which 15 WPPs are installed at buses 84, 143, 

150, 190, 236, 241, 7002, 7003, 7012, 7017, 7024, 7039, 7061, 7139, and 7166. All SGs in the 

system are WECC Type J model (GENTPJU1) and equipped with IEEET1 excitation systems. 

Also, PSS2A stabilizers and TGOV1 governors are installed for each SG. In addition, each WPP 

is modelled by an aggregated 1.5 MW DFIG model. All of these dynamic models are available in 

[25]. The computer used in simulations featured an Intel 3.4-GHz CPU with 16 GB of RAM. 
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Figure 3.5: Modified IEEE 300-bus test system.  
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3.5.2 Database Generation 

Database generation is required to validate the proposed framework. The training database is 

obtained from Monte Carlo TDSs. To this end, reasonable uncertainty models, including outputs 

of WPPs, load levels, and fault locations and durations, are essential. 

The settings and process of the database generation are the same as those in Section 2.4.2. 

Specifically, different wind power penetrations are also set for the two systems for testing. Wind 

power installed capacity ratio (WIC) in both test systems is increased from 0 to 50% of the total 

available capacity of SGs in increments of 10%; these scenarios are denoted as WIC0 to WIC50%, 

respectively. Finally, for each WIC scenario, 7000 and 35000 simulations are carried out in the 

two modified IEEE 68- and 300-bus systems, respectively.  

The data simulated for offline analysis are shown in Table 3.1, where the average pre-fault 

instantaneous wind power penetrations (AVG-IWP) of each WIC scenario are also given. The 

database is employed to perform the analyses in Sections 3.5.3 and 3.5.4 for different validation 

purposes. 

Table 3.1: Simulation data of the two systems for different scenarios. 

Wind 

scenarios 

Modified 68-bus system Modified 300-bus system 

Instability ratio AVG-IWP Instability ratio AVG-IWP 

WIC 0% 16.53% - 12.91% - 

WIC 10% 11.84% 4.53% 12.13% 4.95% 

WIC 20% 11.71% 9.17% 10.69% 9.77% 

WIC 30% 12.80% 14.22% 11.51% 14.78% 

WIC 40% 14.16% 18.37% 12.54% 19.40% 

WIC 50% 14.81% 23.84% 14.27% 24.30% 

 

3.5.3 Performance of the Proposed Stability Prediction Framework 

To investigate the performance of the proposed framework with respect to different levels of 

wind power penetration and related uncertainties, the database shown in Table 3.1 is employed for 

testing. In each WIC scenario, 70% of the simulation cases are randomly chosen for training while 

the remainder are used in testing; this process is repeated ten times and the average prediction 
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accuracy is recorded. The training process explained in Section 3.4 is conducted, and the results 

obtained are reported in Table 3.2.  

The performance of the SI vector in stability prediction is also compared to the features used in 

other state-of-the-art techniques, as shown in Table 3.2. The most prevalent features, e.g., rotor 

angles 𝛿𝑆𝐺  [58], [56], [66], speeds 𝜔𝑆𝐺  [66], and terminal voltages 𝑉𝑆𝐺 [60], [66] of each generator 

for before-, during-, and post-fault (at 𝑡f−, 𝑡f+, 𝑡  − and continuous sampling for five cycles after 

𝑡  ), are respectively employed to train the models for comparison purposes. For the sake of better 

comparison, all of the features are solved with an ensemble DT trained by the Adaboost technique. 

Comparing the results obtained from the proposed framework with those using 𝛿𝑆𝐺  , 𝜔𝑆𝐺 , or 𝑉𝑆𝐺 

clearly reveals the superiority of the SI vector for stability prediction; for the two test systems, the 

prediction accuracies of the proposed method averaged across the six WICs are 98.53 and 97.30%, 

which are better than those of using 𝛿𝑆𝐺  , 𝜔𝑆𝐺 , or 𝑉𝑆𝐺. With increasing wind power penetration, 

the proposed method has a distinct advantage in terms of accuracy. This is because, compared to 

other features, each 𝑆𝐼 vector correlates with a set of stability margin indices considering the 

influences of WPPs on system dynamics. Notably, 𝛿𝑆𝐺  , 𝜔𝑆𝐺 , and 𝑉𝑆𝐺  in this test require five 

cycles of post-fault data, which means they respond 83.3 ms later than the proposed method. 

Table 3.2: Comparison of the prediction accuracy for different features using an 

ensemble DT. 

WIC 
Modified 68-bus system Modified 300-bus system 

𝛿𝑆𝐺  𝜔𝑆𝐺 𝑉𝑆𝐺 𝑺𝑰 𝛿𝑆𝐺  𝜔𝑆𝐺 𝑉𝑆𝐺 𝑺𝑰 

0% 95.74% 97.96% 98.09% 99.03% 89.86% 93.27% 95.08% 98.04% 

10% 93.61% 97.05% 96.88% 98.98% 88.24% 92.24% 93.84% 97.87% 

20% 92.59% 95.38% 95.79% 98.59% 84.97% 89.52% 90.81% 97.61% 

30% 92.18% 94.82% 94.42% 98.46% 83.49% 86.84% 89.26% 97.26% 

40% 91.14% 92.06% 92.29% 98.17% 81.29% 84.19% 87.79% 96.83% 

50% 89.56% 91.24% 91.35% 97.96% 78.34% 83.14% 85.35% 96.17% 

In addition, the prediction accuracy is evaluated for different combinations of the existing 

features and the results obtained are reported in Table 3.3. Comparing Tables 3.3 and 3.2 shows 

that combining the features, generally, improves the prediction accuracy, while a noticeable gap 

still exists compared to utilizing the 𝑆𝐼 vector, especially in high wind power-integrated scenarios. 



44 

 

The results show that interpreting these raw data into derived features effectively improves the 

accuracy of the ML-based prediction model. It should be noted that an increase in the number of 

features could lead to an overfitting issue, which may subsequently lead to a degradation in overall 

performance [17], [104]. This is verified in Table 3.3 that shows the accuracy may worsen when 

using all three features compared to only using 𝜔𝑆𝐺  and 𝑉𝑆𝐺. Considering the number of features 

can be relatively high for large-scale networks by simply combining all available features, it is 

necessary to reduce the dimensionality of the input space and consequently improve the 

generalization performance of the classifier [17]. 

Table 3.3: Comparison of the prediction accuracy for different sets of input features using 

an ensemble DT. 

WIC 
Modified 68-bus system Modified 300-bus system 

𝛿𝑆𝐺+𝜔𝑆𝐺  𝛿𝑆𝐺+𝑉𝑆𝐺 𝜔𝑆𝐺+𝑉𝑆𝐺 𝛿𝑆𝐺+𝜔𝑆𝐺+𝑉𝑆𝐺  𝛿𝑆𝐺+𝜔𝑆𝐺  𝛿𝑆𝐺+𝑉𝑆𝐺 𝜔𝑆𝐺+𝑉𝑆𝐺 𝛿𝑆𝐺+𝜔𝑆𝐺+𝑉𝑆𝐺 

0% 98.02% 98.10% 99.11% 99.10% 93.21% 95.01% 97.06% 96.99% 

10% 96.69% 96.51% 97.36% 97.11% 92.27% 93.57% 94.02% 94.22% 

20% 94.96% 95.98% 96.03% 96.01% 89.42% 89.54% 91.45% 91.39% 

30% 94.65% 95.00% 95.13% 95.25% 86.52% 88.33% 90.63% 90.71% 

40% 92.32% 92.25% 93.51% 93.26% 85.85% 87.50% 89.54% 89.30% 

50% 91.15% 91.03% 92.34% 92.36% 85.11% 87.02% 88.99% 88.86% 

Besides the boosting technique-trained ensemble DT, different prediction engines, including 

neural network (NN), support vector machine (SVM), and random forest (RF) are also applied to 

test the performance of each feature. In this comparison, the two networks for WIC50% are 

employed and all prediction engines are trained using the scikit-learn 0.20.4 package in Python 

[124]. The results noted in Table 3.4 show that the 𝑆𝐼 vector still outperforms the others while the 

accuracies of each features vary somewhat compared to corresponding results in Table 3.2. 

Specifically, the tree-based algorithms (boosting technique-trained ensemble DT, RF) show 

advantages in transient stability prediction, which corroborates the simulation results in [56]. 

Furthermore, to better illustrate the advantages of using SI vectors as features, the distribution 

of simulation samples in 𝑆𝐼 space and the performance of the proposed method with respect to 

dimensions of each 𝑆𝐼 vector are shown in Figures 3.6 and 3.7, respectively. The samples are 

simulated from the aforesaid IEEE 68-bus system for WIC50%, during which 18 IMs are identified, 
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as listed in Table 3.5 in the order of the most to least prominent, based on the database. Similarly, 

the values in each 𝑆𝐼 vector are also sorted in the same order, and thus 𝑆𝐼1 ~ 𝑆𝐼3 is calculated based 

on the three most prominent IMs, respectively, in which the ΩC/ΩR sets is No. 1 ~ 3 in Table 3.5, 

respectively. Figure 3.6 indicates that samples with lower 𝑆𝐼 values are more prone to instability, 

and Figure 3.7 shows that the prediction accuracy improves by developing the dimension of the 

𝑆𝐼 vector. Moreover, Figure 3.7 shows that as the dimension of each 𝑆𝐼 vector develops to a certain 

level (e.g., 16), an increase in dimension of each 𝑆𝐼  vector does not significantly affect the 

prediction accuracy. This indicates that, in practice, the proposed method has enough potential to 

accurately predict stability status in cases where IMs rarely appear in the training phase. 

Table 3.4: Comparison of the prediction accuracy for different sets of input features 

using different ML techniques. 

Algorithm 
Modified 68-bus system (WIC50%) Modified 300-bus system (WIC50%) 

𝛿𝑆𝐺  𝜔𝑆𝐺  𝑉𝑆𝐺 𝑺𝑰  𝛿𝑆𝐺  𝜔𝑆𝐺  𝑉𝑆𝐺 𝑺𝑰  

NN 91.03% 91.60% 91.02% 96.13% 77.30% 84.36% 85.66% 95.56% 

SVM 90.04% 91.36% 91.12% 95.93% 78.34% 82.81% 84.05% 94.75% 

RF 90.46% 92.30% 91.33% 97.52% 79.51% 85.15% 87.63% 96.68% 

 

Stable

Unstable

𝑆
𝐼 3

𝑆𝐼2
𝑆𝐼1  

Figure 3.6: Distribution of simulation samples in the 𝑆𝐼1, 𝑆𝐼2, and 𝑆𝐼3 planes. 



46 

 

 

Figure 3.7: Performance of the proposed method with respect to dimensions of each 𝑆𝐼 vector. 

Table 3.5: IMs identified in training database for the IEEE 68-bus test system for WIC50%. 

No. Clustering of SGs (ΩC/ΩR) No. Clustering of SGs (ΩC/ΩR) 

1 (SG9)/(SG1–9, SG10–16) 10 (SG1–12)/(SG13–16) 

2 (SG14–16)/( SG1–13) 11 (SG8)/(SG1–7, SG9–16) 

3 (SG1–12, SG14–16)/(SG13) 12 (SG1–9)/(SG10–16) 

4 (SG6–7)/(SG1–5, SG8–16) 13 (SG4–7)/(SG1–3, SG8–16) 

5 (SG16)/(SG1–15) 14 (SG1–11)/(SG12–16) 

6 (SG11)/(SG1-10, SG12–16) 15 (SG2–7)/(SG1, SG8–16) 

7 (SG8–9)/(SG1–7, SG10–16) 16 (SG3)/(SG1–2, SG4–16) 

8 (SG14)/(SG1-13, SG15-16) 17 (SG2–9)/(SG1, SG10–16) 

9 (SG2–3)/(SG1, SG4–16) 18 (SG1–10)/(SG11–16) 

3.5.4 Sensitivity Analysis with Respect to Practical Issues 

The robustness of an algorithm should be assessed by its sensitivity to discrepancies among the 

assumed scenarios and reality. In practice, the behavior of some uncertainties may differ from 

those considered in the training process, e.g., when WPPs are exposed to abnormal weather. In 

addition, the topology of the networks may vary in real scenarios for different operations. These 

uncontrollable factors may interfere with the prediction results from a trained model. For this 
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reason, two prediction models that are already trained by ensemble DT from the aforesaid two 

systems for WIC50% are employed for the robustness test. 

In the first robustness test (RT-I), the two trained models are tested using data simulated from 

the corresponding system while the PDFs for each WPP are trained from another data source from 

[125]. In this study, the Wasserstein Distance (WD) is used to measure the difference between the 

original and modified PDFs of each WPP. This distance function can be defined between 

probability distributions 𝜇 and 𝜐, as follows [126]: 

W(𝜇, 𝜐 ) = inf
𝜋∈Φ(𝜇,𝜐 )

∫ |𝑥 − 𝑦|𝑑𝜋(𝑥, 𝑦)
 

ℝ×ℝ

 (3.9) 

where Φ(𝜇, 𝜐 )is the set of probability distributions on ℝ × ℝ whose marginals are 𝜇 and 𝜐 on the 

first and second factors, respectively. The WDs between new PDFs of each WPP and 

corresponding originals of the modified 68-bus system are listed in Table 3.6. Similar settings are 

also implemented for the WPPs in the 300-bus system. 

Table 3.6: WD between new PDFs of each WPP and corresponding originals. 

WPP Connected Bus 18 22 25 29 31 32 36 41 42 

WD 0.32 0.33 0.31 0.09 0.33 0.40 0.29 0.25 0.39 

In the second robustness test (RT-II), the two trained models are tested using data simulated 

from the corresponding system under randomly 𝑁 − 1 conditions, i.e., one of the elements of the 

system is randomly switched out before each dynamic simulation. 

7000 and 35000 cases are respectively simulated from the two systems based on the database 

generation method introduced in Section 3.5.2 for both RT-I and RT-II. The two trained models 

applied to test these data and their performance is compared with accuracies predicted by 𝑉𝑆𝐺, 

which performs relatively better than 𝛿𝑆𝐺  or  𝜔𝑆𝐺  with respect to prediction accuracy according to 

Table 3.2. The results are illustrated in Figure 3.8. 

Figure 3.8 shows that the prediction accuracies based on  𝑉𝑆𝐺 are vulnerable to the profile of 

probability distributions used to represent the system uncertainties and susceptible to changes in 

the system typology, while the proposed method demonstrates better robustness. This is because 



48 

 

the calculation of 𝑆𝐼 vectors takes system operating points such as real-time topology and wind 

power penetration into consideration. This validates the robustness of the proposed method with 

respect to abnormal weather and variations in network typology. 

The performance of the proposed method is also assessed in the presence of PMU measurement 

errors. According to the IEEE C37.118 standard, the PMU measurements should have a total 

vector error of less than 1% [47]. To this end, following the approach in [60], white noise is 

generated and imposed on all post-fault offline data listed in Table 3.1, and the training and testing 

process is repeated. The results are reported in Table 3.7. Compared to the results when PMU 

measurement errors are ignored, the average accuracies of the two systems in all WICs decrease 

by 0.74 and 0.98%, respectively. To conclude, the proposed method can make high-quality 

predictions considering noisy PMU measurements. 
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Figure 3.8: Performance of the proposed framework in robustness tests. 

Table 3.7: Prediction accuracy of the proposed method considering PMU measurement errors. 

WIC 0% 10% 20% 30% 40% 50% 

Modified 68-bus system 98.21% 97.86% 97.73% 97.62% 97.32% 97.13% 

Modified 300-bus system 97.16% 96.91% 96.48% 96.23% 95.86% 95.24% 
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Moreover, the performance of the proposed method is investigated with respect to the size of the 

training database. To do so, an ensemble DT is employed to train the prediction model with 

different sizes of training database. For each size, this training and testing process mentioned in 

Section 3.5.3 are repeated and the average prediction accuracies are illustrated in Figure 3.9. This 

figure shows that an adequate database is essential to train an accurate prediction model, and the 

performance changes slightly when the database reaches a certain level. Based on Figure 3.9, the 

sizes of the databases used for the two systems (7000 and 35000, respectively) in this study are 

adequate. 
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Figure 3.9: Performance of the proposed framework to the size of the training database. Tests 

are conducted on the (a) 68- and (b) 300-bus systems. 

3.6 Summary 

This chapter proposes a novel approach for transient stability prediction of power systems in the 

presence of high penetration of wind power. Inspired by EEAC- and PMU-related studies, and 

taking advantages of the new stability index developed in Chapter 2, an approach is then put 

forward in which the developed algorithm is employed in parallel to find SIs for all possible IMs 

layouts; SI vectors are then constructed and selected as features for transient stability prediction. 
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The effectiveness of the proposed approach is validated by an ensemble DT on two IEEE test 

systems at different wind power penetration levels. The results obtained and comparisons reported 

reveal the superiority of the proposed approach in terms of accuracy, speed, and robustness. 
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4 Preventive Dispatch for Power Systems with High Wind 

Power Penetration 

4.1 Introduction 

From a preventive dispatch perspective, this chapter explores a method that improves the 

stability of power systems with high wind power penetration. This study not only focuses on how 

to increase the system stability by power dispatch, but also how to achieve it “wisely”. That is 

because the preventive dispatch, if not carefully planned, can significantly increase the system 

operating cost. Power systems should be operated at a reasonable operating cost while meeting the 

stability requirements. This chapter aims to offer a computationally efficient dispatching method 

with a satisfactory trade-off between economics and stability. 

In previous research, different solutions for transient stability constrained OPF (TSC-OPF) have 

been proposed [67]–[76]. Nevertheless, these approaches mainly focus on deterministic systems 

and face challenges when applied to high renewable energy-integrated systems. Multisource 

renewables such as wind power are highly variable even within a single hour [77]. Therefore, 

numerous possible system operating points need to be considered in each power dispatch given 

that OPF is frequently solved for the hour-ahead system [78], [79]. This results in an unacceptable 

computational burden for deterministic approaches. In addition, as stochastic factors in power 

systems affect transient stability, it is necessary to analyze transient stability from a probabilistic 

point of view. In previous studies, a point estimate method and Kalman filter are respectively 

applied in  to estimate the uncertainty of the system stability margin caused by the wind power 

uncertainties [82], [83]. In [84], Taguchi’s orthogonal array testing is utilized to solve the TSC-

OPF problem considering wind power variations. Although these methods dramatically reduce the 

test scenarios, the influence of wind power uncertainty on stability indices may not be fully 
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considered, and the accuracy of the estimations may degrade if the wind generation does not follow 

the predetermined probability distribution density function. Moreover, the existing TSC-OPF 

studies mainly handle a limited set of fault scenarios. However, a particular dispatching scheme 

made against specific fault scenarios may, in turn, deteriorate the system stability against other 

scenarios. Given the probabilistic nature of different contingencies, a dispatching method that sets 

flexible probabilistic stability standards against various contingencies can be beneficial to the 

overall stability of systems. 

To unravel the above-mentioned restrictions, a novel power dispatching method is introduced. 

To eliminate the need to run excessive time-consuming TDSs in each dispatching operation, an 

ML-based model is trained offline to predict CCT and IM. Then, IM-categorized probabilistic 

transient stability constraints (PTSCs) are formulated for all transmission lines that potentially 

trigger instability. Based on the predictions, the current system operation plan is evaluated with 

respect to the PTSCs, and the sensitivity of the probabilistic level of CCT to the active power 

generated from the critical generators is calculated for each IM category. Accordingly, a set of 

dispatching constraints are generated and embedded into the conventional OPF formulation, and 

then the dispatching is rescheduled. The checking-and-rescheduling procedures are conducted 

iteratively until the optimal operation state is found. 

4.2 Mathematical Formulation 

In this section, the mathematical formulation of the problem is introduced. In this regard, the 

proposed method should minimize the objective function and, at the same time, satisfy all the 

constraints. 

4.2.1 Objective Function 

The objective of generation scheduling is to minimize the total operating cost of all SGs in the 

system. 

min  ∑ (𝑎2𝑖𝑃𝑖
2 + 𝑎1𝑖𝑃𝑖 + 𝑎0𝑖)

𝑖∈ΩSG

 (4.1) 

where 
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𝑎2𝑖, 𝑎1𝑖, and 𝑎0𝑖 are the generation cost coefficients of the SG connected at bus 𝑖, 

ΩSG: set of SGs in the system. 

4.2.2 Static Constraints 

The AC power flow equations are described by(4.2): 

{
 
 

 
 𝑃𝑖 + 𝑃W𝑖 − 𝑃𝐿𝑜𝑎𝑑.𝑖 − 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗cos𝜃𝑖𝑗 + 𝐵𝑖𝑗sin𝜃𝑖𝑗) = 0

𝑗∈Ω𝐵

𝑄𝑖 +𝑄W𝑖 − 𝑄𝐿𝑜𝑎𝑑,𝑖 − 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗sin𝜃𝑖𝑗 − 𝐵𝑖𝑗cos𝜃𝑖𝑗) = 0

𝑗∈Ω𝐵

    𝑖 ∈ ΩB 

(4.2) 

where 

ΩB: set of all buses in a power system; 

𝑃𝑖: active power injection of SG at bus i, 

𝑄𝑖: reactive power injection of SG at bus i, 

𝑉𝑖: voltage magnitude of bus i, 

𝑃W𝑖: active power injection of WPP at bus i, 

𝑄W𝑖: reactive power injection of WPP at bus i,  

𝜃𝑖𝑗: voltage angle difference between bus i and j; 

𝑃𝐿𝑜𝑎𝑑.𝑖: active load at bus i; 

𝑄𝐿𝑜𝑎𝑑,𝑖: reactive load at bus i; 

𝐺𝑖𝑗: conductance between buses i and j, 

𝐵𝑖𝑗: susceptance between buses i and j. 

Equation (4.3) denotes the constraints of bus power injection, bus voltage magnitudes, and line 

current magnitudes, 

{
 
 

 
 𝑃𝑖 ≤ 𝑃𝑖 ≤ 𝑃𝑖, 𝑖 ∈ ΩSG

 𝑄𝑖 ≤ 𝑄𝑖 ≤ 𝑄𝑖, 𝑖 ∈ ΩSG

𝑉𝑖 ≤ 𝑉𝑖 ≤ 𝑉𝑖, 𝑖 ∈ ΩB

𝐼𝑖 ≤ 𝐼𝑖 ≤ 𝐼𝑖, 𝑖 ∈ ΩL

 

(4.3) 

where 

𝑃𝑖 and 𝑃𝑖: lower and upper active power limits of SG𝑖, respectively; 
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𝑄𝑖 and 𝑄𝑖: lower and upper reactive power limits of SG𝑖, respectively; 

𝑉𝑖 and 𝑉𝑖: lower and upper voltage limits of bus i; 

𝐼𝑖 and 𝐼𝑖: lower and upper current limits of transmission line i; 

𝐼𝑖: current on line 𝑖, 

ΩL: set of transmission lines. 

4.2.3 Dynamic Constraints 

The dynamic equations are listed as, 

{

𝒙̇(𝑡) = 𝐃(𝒙(𝑡), 𝒚(𝑡), 𝒖, 𝜺)

𝐄(𝒙(𝑡), 𝒚(𝑡), 𝒖, 𝜺) = 0

𝒙(𝑡0) = 𝒙0 , 𝒚(𝑡0) = 𝒚0 

          𝑡 ∈ [𝑡0, 𝑡𝑒 𝑑] 
(4.4) 

where 

𝑡0: initial time of transients, 

𝑡𝑒 𝑑: end time of transients, 

𝒙(𝑡) and 𝒚(𝑡): state and algebraic variables in the transient period [𝑡0, 𝑡𝑒 𝑑], respectively, 

𝒙0 and 𝒚0: initial values of 𝒙(𝑡) and 𝒚(𝑡) at 𝑡0, 

𝒖: control variables such as the active power output of each SG,  

𝜺: uncertainties that affect the system operating point, e.g., variations of the power generated from 

each wind power plant (WPP), uncertainty of load, etc., 

𝐃(∙): differential equations representing system transients, 

𝐄(∙): power balance equations to be satisfied at each instant of time. 

In this study, SGs in the system are round rotor generator model GENROU equipped with 

IEEEX1 excitation systems. IEEEST stabilizers and IEESGO governors are installed for each SG. 

Each WPP is modeled by an aggregated 1.5 MW DFIG model. These dynamic models and their 

parameters are given in [25]. Other dynamic models for each device can be used without loss of 

generality.  

Note that the dynamic constraints given by (4.4) are not directly formulated in the power 

dispatching formulation. Instead, they are considered inside the dynamic simulations during the 

database generation stage. Thus, the dynamics of the system can be learned by the prediction 
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model, which is then applied to online dispatching operations. More details about the prediction 

model are discussed in Section 4.3. 

4.2.4 Probabilistic Transient Stability Constraints 

Generally, the PTSC of a power system can be formulated as [82]: 

𝜌 (𝜏((𝒙𝑠𝑜𝑙, 𝒚𝑠𝑜𝑙), Ω
L, 𝜻, 𝒖, 𝜺, 𝑇) > 𝛼)  ≥ 𝛽 (4.5) 

where 

𝜌(∙) represents the probability; 

𝜏: stability index of interest, which is CCT in this study but can also represent other stability 

indices; 

(𝒙𝑠𝑜𝑙, 𝒚𝑠𝑜𝑙): dispatching solution, i.e., the system state and algebraic variables after a certain 

dispatch; 

𝜻: PDF of fault occurrence for each transmission line in ΩL; 

𝑇: time interval between two consecutive dispatching operations. 𝛵 is set to one hour in this 

research given that OPF is frequently solved for hour-ahead operation [78], [79]. 

𝛼: user-defined threshold value of CCT.  

Constraint (4.5) states that if a random fault occurs at lines in ΩL  between two consecutive 

dispatching operations, considering 𝜻 and 𝜺 during this period, the probability of CCT > 𝛼 must 

not be less than the security level 𝛽. 

Figures 4.1 and 4.2 are illustrative examples showing the idea of incorporating PTSCs into the 

power dispatch problem using a two-machine power system. Figure 4.1 shows two dispatching 

solutions and their corresponding possible operating points in an interval 𝛵, in which the two 

solutions are calculated from OPF with and without PTSCs. Figure 4.2 depicts the PDF of CCT of 

the two solutions with respect to a set of potential faults, in which the violation area corresponds 

to the possibility that CCT below the threshold value 𝛼. The two figures convey the idea that by 

incorporating PTSCs into power dispatch, the stability level of the system is expected to satisfy 

the security requirement. 

However, it is cumbersome to analyze each potential fault individually after considering 𝜺, and 

therefore dealing with (4.5) in the OPF problem can be very complicated. In this regard, given that 
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a certain dispatching solution may have a similar effect on system vulnerability to multiple faults 

that trigger the same IM [74], PTSCs are formed in a more generic and tractable manner by: 

  𝜌 (CCT((𝒙𝑠𝑜𝑙, 𝒚𝑠𝑜𝑙), Ω
L, 𝜻, 𝒖, 𝜺, 𝑇) > 𝛼𝑘)  ≥ 𝛽𝑘            ∀ 𝑘 ∈ ΩIM (4.6) 

where ΩIM is the set of all IMs that may appear in the network. This manner also helps to set 

flexible probabilistic stability standards for each IM to be prevented. Note that the definition of 

IM has been introduced in Section 3.2.1. In the following, 𝜌 (CCT((𝒙𝑠𝑜𝑙, 𝒚𝑠𝑜𝑙), Ω
L, 𝜻, 𝒖, 𝜺, 𝑇) >

𝛼𝑘) is represented as 𝜌𝑘(CCT > 𝛼𝑘) for simplicity. 

 possible operating points of 

 of OPF with and without PTSCs, respectively𝒙𝑠𝑜𝑙, 𝒚𝑠𝑜𝑙,

, , respectively and

𝑃1

𝑃 2

 

Figure 4.1: Illustration of the power dispatch with and without PTSCs. 

𝛼

 

Figure 4.2: PDF of stability index with and without PTSCs. 

As the system operating cost may increase after considering the PTSCs, this study aims to offer 
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a computationally efficient dispatching method with a satisfactory trade-off between economics 

and stability. 

4.3 Difficulties and the Proposed Solution 

4.3.1 Difficulties 

The difficulty of this problem lies in how to find the optimal dispatching solution after 

considering the PTSCs. It can be decomposed into three the sub-difficulties: 

(1) How to rapidly collect the stability status of the system against a massive of preconceived 

fault scenarios. 

(2) After obtaining the stability status, how to check it with respect to PTSCs. 

(3) How to dispatch the system based on the results from (2). 

To solve the above problems, a solution is proposed and elaborated through Sections 4.3.2.–

4.3.5.  

4.3.2 Training of the (CCT, IM) Prediction Model  

The CCT and IM are two key indices in power system transient stability analysis. The value of 

CCT correlates the system stability level against a specific fault, and the IM indicates the critical 

SGs that lose synchronism caused by the fault.  

Denote ΩCCT,IM as a set of data pair (CCT, IM), which contains the CCTs and IMs of a specific 

system under all possible fault scenarios. For a deterministic system under a set of preconceived 

faults, the ΩCCT,IM  can be collected by conducting TDSs for all possible fault scenarios. The 

ΩCCT,IM reflects the overall stability level of a system and identifies the vulnerable SGs; This 

information provides system operators with the basis for preventive dispatch. However, for a high 

wind power-integrated system, collecting ΩCCT,IM by TDSs may be computationally intractable as 

the potential operating points increase exponentially. As a result, the power dispatching methods 

assisted by TDSs may face challenges in this situation. 

To address this issue, a prediction model is trained offline using an ML technique to rapidly 

predict the CCT and IM for a large number of possible fault scenarios without TDSs. To this end, 
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a training database is required. In this study, it is obtained from using Monte Carlo TDSs. During 

the simulations, system pre-fault variables and fault locations, as listed in Table 4.1, are saved as 

input features for model training [127]. The data pair (CCT, I ) of each case is saved as target 

labels. It might be helpful to mention that the training database generation and model training are 

performed offline, so they do not increase the computational time during the online dispatching 

operations. 

The training process of the ML-based model is illustrated in the left part of Figure 4.3. Note that 

an ML-based model is trained on and applied to the same system. To obtain an adequate and 

reasonable training database, the statistical models of uncertainties, including outputs of each 

WPP, load levels, and fault locations, are required. In practice, these uncertainties can be estimated 

from their corresponding historical observations. Next, Monte Carlo TDSs are conducted: in each 

simulation, the uncertain variables in the system are sampled from the corresponding statistical 

models. Then, the selected features and target labels (CCT and IM) are extracted from the 

simulation outputs and saved in the database. After the database is generated, a prediction model 

is trained and saved for online applications.  

Table 4.1: Selected features and labels for prediction model training. 

Features Description 

1 Rotor angles of each SG  

2 Active power output of each SG and WPP 

3 Reactive power output of each SG 

4 Fault location (categorical feature) 

Labels Description 

1 (CCT, I )  

Specifically, the prediction model consists of a regression model (to predict CCT) and a multi-

class classification model (to predict IM). In this research, an ensemble technique that combines 

multiple classification and regression trees [121] trained by the AdaBoost method [122] is applied. 

An introduction of AdaBoost for binary classification has been introduced in Section 3.3.2. 

Beyond that, AdaBoost was further explored and can be applied to multi-class classification and 

regression problems [128], [129]. 
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Figure 4.3: Offline training and online application of the ML-based model. 

The training process using Adaboost for binary and multiple classification are similar. The 

process for multiple is discussed only in brief here since it is not the contribution of this research 

work. For the multi-class classification problem, the AdaBoost technique fits a sequence of weak 

classifiers on repeatedly modified versions of the data. The data modifications at each so-called 

boosting iteration apply weights 𝜛1, 𝜛2, … , 𝜛𝑁 to each of the total training samples, where 𝑁 is 

the number of total training samples. Initially, those weights are all set to 1 𝑁⁄  so that the first step 

simply trains a weak learner on the original data. At each step, misclassified training data have 

their weights boosted, or decreased otherwise. As iterations proceed, examples that are difficult to 

predict receive ever-increasing influence. Each subsequent weak classifier is thereby forced to 

concentrate on the samples that are missed by the previous ones in the sequence. The final classifier 

is defined as the linear combination of the classifiers from each step. 

Similarly, for the regression problem, regressors are trained sequentially. At each boosting 

iteration, a new regressor is fitted on a modified version of the original database; based on the 

prediction results of the newly constructed regressor, the weights of those samples most in error 

are adjusted. As such, subsequent regressors focus more on difficult cases. All trained regressors 
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are combined using the weighted median at the end of the training. 

Detailed descriptions of AdaBoost for classification and regression are reported in [128], [129], 

respectively. Other regression and classification techniques such as deep learning can also be 

applied without loss of generality. 

4.3.3 Online Application of the Prediction Model 

The online application of the trained model is illustrated in the right part of Figure 4.3. The 

purpose of the prediction model is to rapidly assess the transient stability of a large number of 

possible fault scenarios in the online application stage. To generate the scenarios, hour-ahead 

uncertainty information of the system, including wind power uncertainty and PDFs of fault 

locations, is required. Such information is fairly available to operators in practice. Notably, the 

hour-ahead wind power uncertainty of each WPP can be represented by a prediction interval (PI), 

which is prevalent in short-term wind power prediction and can provide ample uncertainty 

information [130]. The PDF of fault locations,  𝜻 , can be set by system operators based on 

historical records. Thus, a set of feasible wind power generation scenarios, Ω𝑤, and the lists of 

fault lines ℒ, can be generated by sampling from the PIs and 𝜻, respectively. Next, the set of 

possible operating points ΩOP is generated based on Ω𝑤, where |ΩOP| = |Ωw|. Further, the set of 

fault scenarios, Ωℒ,op, which consider each fault at ℒ for all operating points in Ωop, are generated, 

where |Ωℒ,op| = |ℒ| × |ΩOP|. As a result, ΩCCT,IM is predicted for Ωℒ,𝑜𝑝 by the trained model. An 

illustrative explanation of predicting ΩCCT,IM using the trained model is shown in Figure 4.4. 

The predicted ΩCCT,IM  contains the information of CCTs and corresponding IMs for all 

preconceived fault scenarios. Once the ΩCCT,IM is collected, it will be checked with respect to 

PTSCs, i.e., the values of 𝜌𝑘(CCT > 𝛼𝑘) ∀ 𝑘 ∈ ΩIM are calculated based on the ΩCCT,IM and then 

compared to the PTSCs. To do this, the CCTs in ΩCCT,IM are clustered into different groups based 

on their related IM. Thus, ∀ 𝑘 ∈ ΩIM, the PDF of the CCT, ℘𝑘(CCT), can be estimated based on 

the statistical data of the corresponding group. In this research, it is estimated using Gaussian 

kernels in a non-parametric way [131]. Then, the 𝜌𝑘(CCT > 𝛼𝑘)   ∀ 𝑘 ∈ ΩIM can be calculated by: 

𝜌𝑘(CCT > 𝛼𝑘)  = 1 − ∫ ℘𝑘(CCT)
𝛼𝑘

0
𝑑(CCT)  (4.7) 
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In this way, the stability status is checked with respect to PTSCs, i.e., whether 𝜌𝑘(CCT > 𝛼𝑘) >

𝛽𝑘  ∀ 𝑘 ∈ ΩIM. Then the power is dispatched based on the checking results, as discussed in the 

section below. 

1st line in ℒ

Operation point 1

Fault

ML

2

CCT,IM

ΩOP

CCT, I 

…
…

ΩCCT,IM

CCT, I 

2nd line in ℒ
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ΩOP

CCT, I 
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The last line in ℒ
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2
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ΩOP

CCT, I 
CCT, I 

 

Figure 4.4: Predict ΩCCT,IM using the trained model. 

4.3.4 Converting PTSCs into Linear Algebraic Form 

This section discusses the dispatching method. In TSC-OPF studies, trajectory sensitivity has 

been utilized to transform the implicit transient stability constraints into explicit dispatching 

constraints [70]–[73]. However, the calculation of the trajectory sensitivities can be 

computationally expensive even for a deterministic system [70], [82]. 

Notably, these works established that the transient stability level has a quasi-linear relationship 

with many key factors, such as the generation output from critical SGs [84]. The transient stability 

level of the system against a specific 𝑘 can be improved by shifting the active power generated 

from Ω𝑘
C to Ω𝑘

R  where Ω𝑘
C and Ω𝑘

R are the set of critical and remaining SGs in regard to IM 𝑘, 
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respectively [72]–[74]. The physical interpretation of this active power shift can be explained via 

the EEAC, which has been introduced in Section 2.2. Based on the EEAC, Ω𝑘
C and Ω𝑘

R can be 

modeled by two equivalent SGs, and then be reduced to a one-machine-infinite-bus (OMIB) 

system, as shown in Figure 2.1. The dynamic mapping of the equivalent OMIB under such an IM 

is given by (4.8)–(4.10), where  𝜔, 𝑃𝑖, 𝑃, 𝑃𝑚𝑒𝑐ℎ,𝑖, 𝑃𝑚𝑒𝑐ℎ,  𝜔0, 𝑀𝐶 and 𝑀𝑅 have been introduced in 

Section 2.2. 

𝑀𝐶𝑀𝑅

 𝜔0(𝑀𝐶+𝑀𝑅)

𝑑𝜔

𝑑𝑡
= 𝑃𝑚𝑒𝑐ℎ − 𝑃 (4.8) 

𝑃𝑚𝑒𝑐ℎ =
1

𝑀𝐶+𝑀𝑅
( 𝑀𝐶 ∑ 𝑃𝑚𝑒𝑐ℎ,𝑖

𝑖∈Ωk
C

− 𝑀𝑅 ∑ 𝑃𝑚𝑒𝑐ℎ,𝑗

𝑗∈Ωk
R

) 
(4.9) 

𝑃 =
1

𝑀𝐶+𝑀𝑅
( 𝑀𝐶 ∑ 𝑃𝑖

𝑖∈Ωk
C

− 𝑀𝑅 ∑ 𝑃𝑗
𝑗∈Ωk

R

) 
(4.10) 

Equations (4.8)–(4.10) show that shifting the power from Ω𝑘
C to Ω𝑘

R functionally reduces 𝑃 and 

𝑃𝑚𝑒𝑐ℎ of the OMIB without changing the total power supply, thus, helping to reduce the angular 

acceleration of the OMIB during a fault. Accordingly, the transient stability is reinforced for a 

specific IM. The same procedure can be applied to all IMs of interest in a straightforward manner. 

In this research, it is assumed a local quasi-linear relationship exists between the probabilistic 

transient stability level and the active power generated from Ω𝑘
C. According to this relationship, to 

satisfy the PTSCs as shown in (4.6), the amount of active power generation to be shifted from Ω𝑘
C 

to Ω𝑘
R can be calculated.  

To show the relationship, ∀ 𝑘 ∈ ΩIM, it is assumed that : 

𝜌𝑘(CCT > 𝛼𝑘)  =  ℋ𝑘((𝒙𝑠𝑜𝑙, 𝒚𝑠𝑜𝑙), Ω
L, 𝜻, 𝒖̃, 𝜺, 𝑇, 𝑢) (4.11) 

where 𝒖̃  includes all of the control variables except 𝑢 . ℋ𝑘(∙)  is the implicit expression of 

𝜌𝑘(CCT > 𝛼𝑘), and it reveals the variables that affect the value of 𝜌𝑘(CCT > 𝛼𝑘). Linearizing the 

function with respect to 𝑢, and ignoring the high-order terms of the Taylor series expansion given 

the local quasi-linear relationship, gives: 
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Δ𝜌𝑘(CCT > 𝛼𝑘) ≈
𝜕ℋ𝑘((𝒙𝑠𝑜𝑙, 𝒚𝑠𝑜𝑙), Ω

L, 𝜻, 𝒖̃, 𝜺, 𝑇, 𝑢)

𝜕𝑢
Δ𝑢 

(4.12) 

where 
𝜕ℋ𝑘

𝜕𝑢
 is the sensitivity of 𝜌𝑘(CCT > 𝛼𝑘) to 𝑢. Now, taking the 𝑃𝑘

C  as 𝑢, and Δ𝑃𝑘
C  as Δ𝑢, 

gives: 

Δ𝜌𝑘(CCT > 𝛼𝑘) ≈
𝜕ℋ𝑘 ((𝒙𝑠𝑜𝑙, 𝒚𝑠𝑜𝑙), Ω

L, 𝜻, 𝒖̃, 𝜺, 𝑇, 𝑃𝑘
C)

𝜕𝑃𝑘
C

Δ𝑃𝑘
C 

(4.13) 

where 𝑃𝑘
C is the power generated from Ω𝑘

C 

𝑃𝑘
C = ∑ 𝑃𝑖

𝑖∈Ω𝑘
C

 (4.14) 

And since the change of 𝑃𝑘
C , i.e., Δ𝑃𝑘

C , is shifted from Ω𝑘
C  to Ω𝑘

R , ignoring the variation of 

transmission loss after power shifting, there is 

Δ𝑃𝑘
C = ∑ 𝑃𝑖

′

𝑖∈Ω𝑘
C

− ∑ 𝑃𝑖

𝑖∈Ω𝑘
C

≈ ∑ 𝑃𝑗
𝑗∈Ω𝑘

R

− ∑ 𝑃𝑗
′

𝑗∈Ω𝑘
R

 (4.15) 

where •′ represents the corresponding variables before the power shifting. 

After shifting the power, the change of 𝜌𝑘(CCT > 𝛼𝑘) can be calculated from: 

Δ𝜌𝑘(CCT > 𝛼𝑘) =  𝜌𝑘(CCT > 𝛼𝑘) − 𝜌𝑘
′ (CCT > 𝛼𝑘) (4.16) 

Thus, based on (4.12), the sensitivity of 𝜌𝑘(CCT > 𝛼𝑘) to the active power shift from Ω𝑘
C to Ω𝑘

R 

can be estimated by: 

𝔰𝑘 =
𝜕ℋ𝑘 ((𝒙𝑠𝑜𝑙, 𝒚𝑠𝑜𝑙), Ω

L, 𝜻, 𝒖̃, 𝜺, 𝑇, 𝑃𝑘
C)

𝜕𝑃𝑘
C

≈
Δ𝜌𝑘(CCT > 𝛼𝑘)

Δ𝑃𝑘
C

 
(4.17) 

Based on the assumed local quasi-linear relationship, to achieve the stability level required (4.6), 

∀ 𝑘 ∈ ΩIM, the objective amount of active power Δ𝑃𝑘
C,obj

 to be shifted from Ω𝑘
C to Ω𝑘

R is calculated 

by: 

Δ𝑃𝑘
C,obj

=
𝛽𝑘 − 𝜌𝑘(CCT > 𝛼𝑘)

𝔰𝑘
 (4.18) 

and then the dispatching plan against the faults is: 
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∀ 𝑘 ∈ ΩIM, ∑ 𝑃𝑖
′

𝑖∈Ω𝑘
C

− ∑ 𝑃𝑖

𝑖∈Ω𝑘
C

≥ Δ𝑃𝑘
C,obj

 (4.19) 

Thus, the probabilistic stability constraints are transformed from (4.6) to (4.19), and are added 

to the conventional OPF formulations, as shown in (4.1)–(4.4). Finally, the OPF with PTSCs is 

solved, and the dispatching solution is updated. In this way, the power adjustment demand Δ𝑃𝑘
C,obj

 

 ∀ 𝑘 ∈ ΩIM can be satisfied at the lowest total increment of the operating cost. 

To correct the error from the quasi-linear relationship and avoid unnecessary over-stabilized 

situations (i.e., unnecessary cost increases due to excessive compliance with the PTSCs), the 

calculation and the shifting of Δ𝑃𝑘
C,obj

 are executed iteratively. The checking-and-rescheduling 

procedures are conducted until the expected dispatching solution is found. 

4.3.5 The Overall Process of the Proposed Solution Algorithm 

The overall process of the proposed solution framework is illustrated in Figure 4.5, where m is 

the iteration number, and ℳ is the maximum allowed number of iterations. Before starting the 

iteration loop, the parameters for dispatching should be first set (step ① in the figure), followed 

by the generation of the Ωw according to the hour-ahead PIs of each WPP (step ②). At each 

iteration, the dispatching solution (𝒙𝑠𝑜𝑙, 𝒚𝑠𝑜𝑙) is first updated, followed by the generation of the 

ΩOP and Ωℒ,op (step ④). Next, the ΩCCT,IM is predicted for Ωℒ,op by the trained model, and the 

values of 𝜌𝑘(CCT > 𝛼𝑘)  ∀ 𝑘 ∈ ΩIM are calculated (step ⑤), as introduced in Section 4.3.3. Then, 

the constraints in (4.6) are checked (step ⑥). If all of the constraints in (4.6) are satisfied at the 

first iteration, i.e., the conventional OPF solution already meets the PTSCs, then no further action 

is needed (steps ⑦ to ⑨). Otherwise, the current plan needs to be rescheduled against instabilities 

or to avoid unnecessary over-stabilized situations. In this regard, ∀ 𝑘 ∈ ΩIM, (4.14)–(4.19) are 

carried out to convert the PTSCs into a set of linear inequality constraints (step ⑫), during which 

the 𝔰𝑘 in (4.17) can be easily calculated from two successive iterations. Specifically, at the first 

iteration, no power has been shifted from Ω𝑘
C  to Ω𝑘

R; so, (4.14)–(4.18) are inexecutable. Thus, 

Δ𝑃𝑘
C,obj

 ∀ 𝑘 ∈ ΩIM can be initialized to 𝜑∑ 𝑃𝑖𝑖∈Ω𝑘
C  (step ③)., where 𝜑 is a value between 0 and 1. 

The transformed linear inequality constraints (4.19) are then created (if 𝑚 = 2) or updated (if 𝑚 >

2), and added to the OPF formulation.  
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𝑚 < ℳ?

Set ΩIM, ΩL, 𝜻, Δ𝑃, ℳ, 𝛼𝑘 and 𝛽𝑘∀ 𝑘 ∈ ΩIM;

generate ℒ based on 𝜻 

Yes

Receive forecasted PIs of each WPP, set the 𝑃 of each WPP at its 

expected value of the next 𝑇, and generate Ω𝑤 based on the PIs

Predict ΩCCT,IM for Ωℒ,op with the trained model introduced in 

Section 4.3.2,  and calculate 𝜌𝑘 CCT > 𝛼𝑘

Solve OPF and update the dispatching solution; generate the Ωop

based on Ω𝑤 and the new solution, then generate Ωℒ,op

Is (4.6) satisfied ?

Other preventive 

control
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No
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the solution
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Figure 4.5: Flowchart of the proposed framework. 

Notably, for over-stabilized situations, which may happen during iterations: 

∃  𝜌𝑘(CCT > 𝛼𝑘)  > 𝛽𝑘  ∀𝑘 ∈ ΩIM (4.20) 

a negative Δ𝑃𝑘
C,obj

 would be obtained from (4.18) for corresponding 𝑘. Then, according to (4.19), 

the power output constraints for the SGs in Ω𝑘
C can be relaxed to allow some active power shift 

from Ω𝑘
R back to Ω𝑘

C; thus, a more cost-saving dispatching result can possibly be found. 
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The iteration is terminated when all constraints in (4.6) are satisfied and, at the same time, the 

maximum power output change in all SGs between the current and last iteration is less than a 

threshold value Δ𝑃: 

Δ𝑃𝑖
max ≤ Δ𝑃 (4.21) 

where  

𝛥𝑃𝑖
max = max| 𝑃𝑖

′ − 𝑃𝑖  | , ∀𝑖 ∈ Ωgen (4.22) 

Therefore, the dispatching plan is finalized when both (4.6) and (4.21) are satisfied. Otherwise, 

the flowchart enters the next iteration, the dispatching solution is updated, and the new iteration 

proceeds, as shown in Figure 4.5.  

4.4 Test and Results 

The described framework is realized by a Python-based interface that calls PSS/E software to 

conduct dynamic simulations, save the data for training and testing of the prediction model; the 

prediction model is trained using the scikit-learn 0.20.4 package [124] in Python 2.7.15. Next, the 

interface implements the proposed procedure, during which MATPOWER [123] is called to solve 

the OPF with PTSCs at each iteration. 

The modified IEEE 16-machine 68-bus system introduced in Section 2.4.1 is used to perform 

the simulations. The cost function coefficients of each generator in the system are given in [132] 

and Appendix C. Each installed capacity of the nine WPPs in this system is 800 MW; thus, the 

wind power installed capacity accounts for 40% of the total load. The computer used in the 

simulations featured an Intel 3.4-GHz CPU with 16 GB of RAM. 

4.4.1 Training and testing of the (CCT, IM) Prediction Model 

4.4.1.1 Databased generation 

Database generation is required to train the prediction models. The training database is obtained 

from Monte Carlo TDSs. In this regard, reasonable uncertainty models, including outputs of WPPs 

and load levels, are essential. In practice, these uncertainty models can be statistically estimated 
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from the corresponding historical observations. In this study, the PDFs of the generation of each 

WPP are estimated using Gaussian kernels in a non-parametric way using hourly historical data 

from [77]. The same method is applied to load where the historical data are retrieved from [120]. 

Thus, before running a dynamic simulation for a specific scenario, the hour of a day is sampled 

randomly, and then load level and WPP outputs are sampled from their respective PDFs for the 

sampled hour. Then, the SG powers are randomly dispatched in their respective output limits, such 

that the total demand and generation are balanced. The faults are assumed to be permanent and are 

cleared by switching off the faulted lines. Moreover, faults are randomly applied to transmission 

lines for each simulation. Only three-phase faults are considered in this study, though the proposed 

method is also capable of handling other fault types.  

In addition, 60,000 cases are generated by running TDSs. Given the fault clearing time of a 

breaker is typically less than 0.2 s [133], the range of CCT considered in the simulation is between 

0 and 0.25 s; i.e., a fault with a CCT that is larger than 0.25 s can be considered safe as it can be 

cleared by a breaker before the system reaches a critical condition. This setting can help save 

simulation time during the database generation; any other ranges can be used without loss of 

generality. For each case, 58 features as introduced in Table 4.1 are used for model training, and 

the (CCT, IM) of the case is used as the target labels.  

It is worth noting that, as a by-product of the model training stage, eight prominent IMs of the 

system are detected and listed in Table 4.2. Thus, the set of IMs, ΩIM ∶=  {𝑘 = 1, 2, … , 8}, and 

the system will be dispatched against these IMs in the following subsection. To keep dispatch more 

focused on critical lines, only fault lines with instability-triggering records during the TDSs are 

selected to recompose the ΩL, as listed in Table 4.2. 

4.4.1.2 Training and Testing  

To adequately assess the performance of the model, 5-fold cross-validation is applied. N-fold 

cross-validation (N= 2, 3, 4, 5…) is widely used in the assessment of the ML-based models. The 

process of 5-fold cross-validation is illustrated in Figure 4.6: first, the database is shuffled then 

partitioned into five equal-sized subsamples, and a single subsample is retained as the validation 

data for testing the model, and the remaining four subsamples are used as training data. The cross-

validation process is then repeated five times. Thus, the performance of the model is tested on the 
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test data that are completely separate from the training set, and the average accuracy of the 5-fold 

cross-validation is reported in Table 4.3. 

Table 4.2: IMs to be prevented and the fault lines considered in dispatching. 

𝑘 IM details (Ω𝑘
C/Ω𝑘

R) ΩL 

1 (SG16)/(SG1-15) 

(lines between bus-bus) 

18-42, 18-49, 18-50, 21-22, 21-68, 

25-26, 25-54, 26-27, 26-28, 26-29, 

27-37, 27-53, 28-29, 32-33, 37-52, 

37-68, 40-41, 41-42, 45-51, 50-51 

2 (SG14-16)/(SG1-13) 

3 (SG6-7)/(SG1-5, SG8-16) 

4 (SG9)/(SG1-8,SG10-16) 

5 (SG8-9)/(SG1-7, SG10-16) 

6 (SG11)/(SG1-10, SG12-16) 

7 (SG4-7)/(SG1-3, SG8-16) 

8 (SG14)/(SG1-13, SG15-16) 
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Figure 4.6: Assess the performance of the model by 5-fold cross-validation. 
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The time consumption for database generation and test accuracy of the prediction model are 

reported in Table 4.3, where the test accuracy includes the mean squared error (MSE) of CCT 

prediction and the classification accuracy of IM prediction. The results validate the high accuracy 

of the trained model with respect to predictions of CCT and IM.  

Table 4.3: Time consumption and performance of the prediction model. 

Database generation Prediction for CCT Prediction for IM 

66406 s MSE: 1.3440×10-4 Accuracy: 99.17% 

 

In addition, to reveal the influences of each feature on prediction, Tables 4.4 and 4.5 report the 

importance scores of each feature for predicting CCT and IM for the IEEE 68-bus system, 

respectively. The importance score refers to the usefulness of a specific feature at predicting the 

target; the calculation method of the scores can be found in [124]. The features investigated include 

pre-fault rotor angles, the active and reactive power output of each SG, active power output of 

each WPP, and fault location. The two tables show that all the selected features contribute to the 

prediction in different degrees. Note the 20 fault lines in the two tables correspond to the 20 fault 

lines in Table 4.2. For a better illustration, the feature importance is summed by type and illustrated 

in Figures 4.7 (a) and (b). Figure 4.7 (a) shows that the fault location makes most of the contribution 

to the training of the CCT prediction model, followed by pre-fault rotor angles, active power output 

from each SG and each WPP, and reactive power output from each SG. This makes sense because, 

in addition to the fault location, the value of CCT largely depends on system operating conditions 

and fault conditions. Figure 4.7 (b) shows that fault locations dominate the contribution for IM 

prediction, while other features also make noteworthy contributions. That is because the type of 

the triggered IM largely depends on fault conditions; at the same time, a specific location may 

trigger different IMs under different system operating conditions. It might be helpful to mention 

that other features such as terminal voltage magnitudes of each SG are tested as well; however, it 

is empirically seen in simulations that their contribution to the prediction is limited compared to 

the features selected. The trained model will be applied to dispatching operations in the next 

section.  
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Table 4.4: Normalized importance scores of each feature for predicting CCT. 

𝛿1 𝛿2 𝛿3 𝛿4 𝛿5 𝛿6 𝛿7 𝛿8 

0.00624 0.00451 0.0031 0.00257 0.00186 0.00676 0.00483 0.00645 

𝛿9 𝛿10 𝛿11 𝛿12 𝛿13 𝛿14 𝛿15 𝛿16 

0.01091 0.07925 0.04944 0.01526 0.02643 0.01068 0.01303 0 

P1 P2 P3 P4 P5 P6 P7 P8 

0.00768 0.00309 0.00684 0.00916 0.00701 0.01688 0.01713 0.00514 

P9 P10 P11 P12 P13 P14 P15 P16 

0.02628 0.00422 0.00703 0.00771 0.00384 0.04853 0.005 0.0197 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

0.0019 0.00149 0.0015 0.00113 0.00172 0.00311 0.00183 0.00231 

Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 

0.00238 0.00157 0.00167 0.00092 0.00155 0.00309 0.00333 0.00419 

PW1 PW2 PW3 PW4 PW5 PW6 PW7 PW8 

0.03601 0.00981 0.0208 0.0057 0.00906 0.00717 0.01372 0.00711 

PW9 Fault_line1 Fault_line2 Fault_line3 Fault_line4 Fault_line5 Fault_line6 Fault_line7 

0.00476 0.02989 0.02545 0.03700 0.03145 0.01671 0.0037 0.00804 

Fault_line8 Fault_line9 Fault_line10 Fault_line11 Fault_line12 Fault_line13 Fault_line14 Fault_line15 

0.0043 0.0083 0.01092 0.00304 0.00351 0.01067 0.01079 0.00496 

Fault_line16 Fault_line17 Fault_line18 Fault_line19 Fault_line20   

0.00675 0.06121 0.02613 0.05157 0.06100    

 

Table 4.5: Normalized importance scores of each feature for predicting IM. 

𝛿1 𝛿2 𝛿3 𝛿4 𝛿5 𝛿6 𝛿7 𝛿8 

0.00158 0.00043 0.00029 0.00131 0.00023 0.00108 0.00019 0.0004 

𝛿9 𝛿10 𝛿11 𝛿12 𝛿13 𝛿14 𝛿15 𝛿16 

0.00231 0.00747 0.00564 0.0011 0.00323 0.00215 0.00428 0 

P1 P2 P3 P4 P5 P6 P7 P8 

0.00677 0.00094 0.00101 0.00005 0.00254 0.00667 0.01245 0.00077 

P9 P10 P11 P12 P13 P14 P15 P16 

0.04921 0.00044 0.00085 0.00072 0.00119 0.01277 0.00125 0.00117 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

0.00035 0.0001 0.00049 0.00144 0.00025 0.00233 0.00081 0.00145 

Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 

0.00406 0.00352 0.00229 0.00017 0.00032 0.00019 0.00161 0.04969 

PW1 PW2 PW3 PW4 PW5 PW6 PW7 PW8 

0.02638 0.00181 0.08331 0.0004 0.00057 0.00066 0.00113 0.0018 

PW9 Fault_line1 Fault_line2 Fault_line3 Fault_line4 Fault_line5 Fault_line6 Fault_line7 

0.00119 0.11134 0.0663 0.11011 0.01701 0.00675 0.00384 0.03326 

Fault_line8 Fault_line9 Fault_line10 Fault_line11 Fault_line12 Fault_line13 Fault_line14 Fault_line15 

0.01794 0.03606 0.0408 0.00341 0.00094 0.01718 0.10965 0.00467 

Fault_line16 Fault_line17 Fault_line18 Fault_line19 Fault_line20   

0.01100 0.01137 0.03352 0.00874 0.03919    
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(a) 

 
(b) 

Figure 4.7: Importance scores of each categorized feature for predicting (a) CCT and (b) IM 

for the IEEE 68-bus system. 

4.4.2 Test of the Proposed Framework  

4.4.2.1 Setting of Parameters 

The ΩIM, ΩL, 𝜻, Δ𝑃, ℳ, 𝛼𝑘 and 𝛽𝑘∀ 𝑘 ∈ ΩIM, and hour-ahead PIs for each WPP are required to 

conduct the test, as shown in steps ①–② in Figure 4.5. The settings of ΩIM and ΩL have been 

introduced in Section 4.4.1. The 𝜻 is set to uniform distribution, and thus the ℒ is set equal to the 

ΩL in this situation. Δ𝑃 is set at 5 MW, which is 0.1% of the upper output limit of the largest SG 
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in the system; ℳ is set at 10. However, these parameters can be set to any other values without 

loss of generality. 𝛼𝑘 and 𝛽𝑘 ∀ 𝑘 ∈ ΩIM are listed in Table 4.6. The above settings can be adjusted 

according to different dispatching requirements. Note that 𝛽𝑘  is not set at 100% ∀ 𝑘 ∈ ΩIM 

because this study is concerned with a probabilistic system in which stochastic factors in a power 

system can affect transient stability. In this regard, the stability level is analyzed from a 

probabilistic point of view. Setting the probabilistic stability security level at 95% means that after 

the power dispatch, if a fault occurs, considering uncertainties in the system, the probability of the 

CCT is greater than the threshold value should no less than 95%. On one hand, considering that 

the occurrence of a fault is generally a small probability event, setting excessively high 

probabilistic stability levels (e.g., 100%) against all possible faults may lead to an unnecessary 

increase in operating costs. Therefore, in the simulations, the security level at 95% seems a 

reasonable trade-off between economics and stability. On the other hand, the system operators can 

also use the proposed method to set the probabilistic transient stability level at different values 

(e.g., 90–100%) based on practical requirements. 

Table 4.6: 𝛼𝑘 and 𝛽𝑘 set for dispatching. 

𝑘 1 2 3 4 5 6 7 8 

𝛼𝑘 (s) 0.10 0.10 0.20 0.15 0.15 0.16 0.20 0.15 

𝛽𝑘 (%) 95 ∀ 𝑘 ∈ ΩIM 

In addition, to set the assumed hour-ahead PIs for all WPPs in the modified IEEE 68-bus system, 

nine sets of hourly wind power data with a 5-minute resolution are selected from [77], and then a 

prediction interval for each data series is produced based on ±10% of the recorded value. The 

selected data and the corresponding PI curves are shown in Table 4.7 and Figure 4.8, respectively. 

Following that, 1200 wind power generation scenarios Ω𝑤are generated, i.e., 100 scenarios are 

randomly sampled every 5 minutes in the dispatching time interval based on the PIs.  

So far, the simulation parameters have been set (steps ①–② in Figure 4.5). Subsequently, the 

procedures in the proposed framework proceed until the terminate condition is met.  

 

 



73 

 

Table 4.7: Selected one-hour wind power data. 

WPP Selected time period 

(MM/DD/YY hr:min) 
Output* 

1 01/06/19 00:25–01:25 475.81 MW 

2 03/25/19 21:10–22:10 366.85 MW 

3 05/25/18 23:25–24:25 472.82 MW 

4 10/28/18 16:50–17:50 322.72 MW 

5 11/28/17 16:50–17:50 551.41 MW 

6 11/20/17 15:55–18:55 527.91 MW 

7 02/17/16 20:20–21:20 330.90 MW 

8 03/06/16 13:50–14:50 323.31 MW 

9 10/10/16 00:50–01:50 321.97 MW 

*Expected (average) output of each WPP in the following hour. 

 

Figure 4.8: Hour-ahead wind power PI for each WPP. 

4.4.2.2 Testing Results 

Tables 4.8 and 4.9 list the values of 𝜌𝑘(CCT > 𝛼𝑘) ∀ 𝑘 ∈ ΩIM and corresponding dispatching 

solution that obtained from the proposed method at each iteration, respectively. It is worth noting 

that the solution of the first iteration, solved by conventional OPF, does not satisfy the PTSCs. The 
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expected dispatching solution is found after eight iterations using the proposed method, during 

which the values of 𝜌𝑘(CCT > 𝛼𝑘) ∀ 𝑘 ∈ ΩIM increase and finally meet the security requirements 

(i.e., 95%). Notably, the operating cost of the proposed method only increased by 3.26% compared 

to OPF, as shown in Table 4.9. 

The results demonstrate that using the assumed sensitivity in (4.17) is feasible for solving the 

power-dispatching problem considering PTSCs. In addition, the results show that the proposed 

method can handle unnecessary over-stabilized situations, e.g., in Table 4.8, the values of the 

𝜌𝑘(CCT > 𝛼𝑘) for 𝑘= 2, 4, 5, and 6 at the 4th iteration excessively satisfy the 𝛽𝑘, and this issue is 

alleviated in the following iterations. Accordingly, the operating cost decreases from 110.31 k$/h 

to 110.11 k$/h, as shown in Table 4.9. 

Further, Figure 4.9 compares the probability distributions of CCT ∀ 𝑘 ∈ ΩIM before and after 

applying the proposed method. Specifically, the non-violation areas under each dashed curve 

correspond to the column values of the first iteration in Table 4.8, and the non-violation areas 

under each solid curve correspond to the column values of the 8th iteration in Table 4.8. Figure 4.9 

shows that the violation areas are greatly reduced by applying the proposed method. 

Table 4.8: Values (%) of 𝜌𝑘(CCT > 𝛼𝑘) at each iteration. 

𝑘 
Iterations 

1st 2nd 3rd 4th 5th 6th 7th 8th 

1 54.56 59.76 99.21 99.99 99.99 99.99 99.99 99.99 

2 74.96 76.27 83.60 96.80 96.15 95.02 94.52 95.11 

3 64.71 70.77 93.31 93.23 94.85 95.23 95.31 95.30 

4 84.05 92.47 95.72 95.43 95.15 95.12 95.09 95.06 

5 79.61 85.62 98.03 97.04 95.71 95.22 95.31 95.29 

6 18.61 99.99 99.99 99.99 99.84 99.85 99.69 98.61 

7 78.31 89.07 96.31 94.46 96.00 96.31 96.61 96.61 

8 45.85 60.42 82.38 92.57 94.04 94.20 95.04 95.02 
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Table 4.9: Active power output (MW) of each SG and operating cost at each iteration. 

SG 
Iteration 

1st 2nd 3rd 4th 5th 6th 7th 8th 

1 129.15 139.22 182.14 194.39 192.81 190.79 190.55 190.42 

2 371.46 388.42 460.39 480.85 478.26 474.90 474.47 474.26 

3 450.22 468.89 547.35 569.52 566.75 563.12 562.65 562.41 

4 391.21 391.18 493.60 505.43 519.62 515.83 515.29 514.81 

5 345.98 346.02 416.83 425.04 434.80 432.18 431.81 431.48 

6 440.81 414.43 308.46 300.49 274.09 271.57 273.08 273.51 

7 341.51 317.89 223.15 216.05 192.45 190.20 191.55 191.93 

8 346.33 346.33 296.05 308.96 324.63 333.70 332.67 332.45 

9 526.24 476.24 448.58 454.70 458.33 459.58 460.63 461.41 

10 432.95 453.08 545.34 573.05 569.34 564.81 564.29 564.01 

11 753.55 703.55 706.63 709.70 712.77 715.75 718.72 721.61 

12 1177.89 1220.77 1419.97 1479.28 1471.15 1461.32 1460.06 1459.49 

13 2549.21 2635.68 3039.01 3158.95 3142.43 3122.51 3119.96 3118.82 

14 1299.66 1249.66 1099.95 1013.91 993.43 979.99 961.31 962.17 

15 739.43 778.21 627.45 596.01 606.97 616.79 620.77 620.47 

16 3859.35 3809.35 3259.84 3077.31 3127.83 3174.66 3190.11 3188.83 

k$/h 106.63 106.74 109.08 110.31 110.32 110.14 110.12 110.11 
 

k = 1

𝛼1

 

k = 2

𝛼2

 

Figure 4.9: Comparison of the probability distribution of CCT ∀ 𝑘 ∈ ΩIM. 
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Figure 4.9 Continued 

4.4.3 Validating the Results Using TDSs 

To verify the dispatching results of the proposed method, two validation tests are carried out: 
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(1) The stability status of the dispatching results is tested by TDSs. For (1), Table 4.10 lists the 

validation results and shows that the values of 𝜌𝑘(CCT > 𝛼𝑘) verified by TDSs are quite close to 

the values output from the proposed method (listed in the last column of Table 4.8). Although the 

values of the 𝜌𝑘(CCT > 𝛼𝑘)  for 𝑘 =4 and 5 are slightly below 95% by 0.04 and 0.23%, 

respectively, the error is acceptable from the engineering point of view. 

(2) The dispatching solution obtained from TDSs is also investigated, i.e., wherein the ΩCCT,IM 

in step ⑤ of Figure 4.5 is obtained from TDSs instead of the ML-trained model. For (2), the 

simulation results based on TDSs are listed in Table 4.11. It reveals the dispatching solution and 

stability levels are very close to those corresponding to the proposed method (listed in the last 

column of Tables 4.8 and 4.9). In addition, a comparison of the two methods in terms of time 

consumption and number of iterations is given in Table 4.12. Note that the consumed time in this 

table is for the online process, i.e., time starts when the system operator obtains information of 

hour-ahead uncertainties and ends when the expected dispatching solution is found. Notably, the 

proposed method is 186188/287 ≈ 648 times faster. This is because for each iteration, 

|Ωℒ,𝑜𝑝 | =20×1200 =24,000 cases are simulated by TDSs given |Ωop| = 1200 and |ℒ| = 20 (ℒ =

ΩL in this test), which may take an extensive amount of time. In contrast, the proposed method 

only needs to solve the power flows to generate the Ωop. Then, the ΩCCT,IM are accurately and 

rapidly predicted by the trained model. Thus, the calculation process takes less than 5 minutes, 

which is quite acceptable for hour-ahead operations. 

The comparisons validate the good performance of the proposed framework in terms of 

practicability, searching for economical solutions, and computational efficiency. Given that most 

TSC-OPF works [70]–[74], [76], [82], [84] rely on TDSs and thus may have difficulty handling 

massive fault scenarios, the proposed method has more advantages for dealing with systems with 

high wind power penetration. 

Table 4.10: Values (%) of 𝜌𝑘(CCT > 𝛼𝑘) tested by TDSs. 

𝑘 1 2 3 4 5 6 7 8 

Verified by 

TDSs 
99.97 95.02 96.46 94.96 94.77 98.92 97.37 95.08 

javascript:;
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Table 4.11: Dispatching result and values of 𝜌𝑘(CCT > 𝛼𝑘) based on TDSs. 

Dispatching result (MW) 

SG 1 2 3 4 5 6 7 8 

Output 192.14 477.02 565.44 518.34 433.91 283.68 201.02 297.02 

SG 9 10 11 12 13 14 15 16 

Output 449.43 567.28 720.73 1466.40 3132.73 969.38 617.19 3173.33 

Total generation from SG: 14065.04 MW; Final operating cost: 110.20 k$/h 

Values of 𝜌𝑘(CCT > 𝛼𝑘) for each IM 

IM 1 2 3 4 5 6 7 8 

Value (%) 99.94 95.05 95.01 95.14 95.06 95.02 95.76 95.00 

Table 4.12: Time consumption and number of iteration of two methods. 

Method Time consumed (s) Iterations 

TDS-based 186188 7 

Proposed 287 8 

  

To validate the local quasi-linear relationship in (4.13), the values of 𝜌𝑘(CCT > 𝛼𝑘) with respect 

to the active power generated from Ω𝑘
C are reported in Figure 4.10. In this test, an IM (𝑘 = 3) is 

selected, where the Ω𝑘
C includes SG6 and SG7, and the 𝛼𝑘 is set at 0.2 s. Note that the change in 

the active power of Ω𝑘
C is balanced by SGs in Ω𝑘

R during the simulations. Figure 4.10 shows that a 

local quasi-linear relationship exists between 𝜌𝑘(CCT > 𝛼𝑘) and the active power generated from 

Ω𝑘
C. Similar simulation results can be obtained for other IMs. 
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Figure 4.10: The value of 𝜌𝑘(CCT > 𝛼𝑘) vs. the active power generated from Ω𝑘
C. 

4.4.4 Comparison with a State-of-the-Art Method 

To further validate the advantage of the proposed method, the dispatching solution is compared 

to that of a method reported in [84], in which the test scenarios of a robust dispatch for wind 

energy-integrated power networks against transient instability are dramatically reduced using 

Taguchi’s orthogonal array. The results of the latter method are reported in Table 4.13. 

Table 4.13: Dispatching result and values of 𝜌𝑘(CCT > 𝛼𝑘) of the comparison method. 

Dispatching result (MW) 

SG 1 2 3 4 5 6 7 8 

Output 206.94 501.90 592.56 523.98 437.88 256.60 176.86 377.71 

SG 9 10 11 12 13 14 15 16 

Output 374.55 599.44 698.13 1534.98 3270.93 957.70 544.54 3000.00 

Final operating cost: 111.91 k$/h 

Values of 𝜌𝑘(CCT > 𝛼𝑘) for each IM 

IM 1 2 3 4 5 6 7 8 

Value (%) 100.00 97.89 98.26 99.23 95.83 99.99 97.30 95.00 
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It can be seen that the robust dispatch method in [84] yields to a conservative solution, as most 

of the PTSCs (95%) are over-satisfied; thus, the operating cost reaches 111.91 k$/h. In contrast, 

the operating cost associated with the proposed method is 110.11 k$/h. Besides the economic 

advantages, another benefit of the proposed method is that it enables operators to set flexible 

probabilistic stability levels (e.g., 80~100%) to each IM that needs to be prevented. 

4.4.5 Validation of the Framework on the IEEE 300-Bus System 

The proposed method is also tested on the modified version of IEEE 300-bus system, which has 

69 SGs, 304 transmission lines and 15 WPPs. The details of the system are introduced in Section 

3.5.1. Specifically, the installed capacity of each WPP is 800 MW, therefore, the wind power 

installed capacity accounts for 50% of the total load. 

4.4.5.1 Training and Testing of the (CCT, IM) Prediction Model 

The training and testing processes described in Section 4.4.1 is applied to train the (CCT, IM) 

prediction model, during which 152,000 cases are generated by TDSs. The computational time for 

database generation is 187,163 s. Based on the testing results, the MSE of the prediction for CCT 

and the accuracy of the prediction for IM are 1.6107×10-4 and 99.39%, respectively, as shown in 

Table 4.14. The results confirm the high accuracy of the trained model. 

Also, the importance scores of each feature for predicting CCT and IM for the modified IEEE 

300-bus system are reported in Figure 4.11. Similar to Figure 4.7, it can be seen that fault location 

is of the highest importance for prediction while the other feature also make noteworthy 

contribution. The trained model is applied to the dispatching operations in the next section.  

Table 4.14: Time consumption and performance of the prediction model for the modified 

IEEE-300 bus system. 

Database generation Prediction for CCT Prediction for IM 

187,163 s MSE: 1.6107×10-4 Accuracy: 99.39% 
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(a) 

 
(b) 

Figure 4.11: Importance scores of each categorized feature for predicting (a) CCT and (b) IM 

for the modified IEEE 300-bus system. 

4.4.5.2 Testing Results 

For the validation of the framework, nine IMs are selected, as listed in Table 4.15, in which the 

set of selected fault lines ΩL, as well as 𝛼𝑘 and 𝛽𝑘  for dispatching, are also given. ℳ is set at 15. 

In addition, the wind power datasets listed in Tables 4.7 and 4.16, which are selected from [77], 

are used to set the assumed hour-ahead PIs for all WPPs. The procedure for setting PIs and other 

testing parameters is the same as that in Section 4.4.2.  
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The results solved by OPF without considering the PTSCs and the proposed solutions are listed 

in Table 4.17, and the results based on TDSs are also given as a benchmark for comparison. Table 

4.17 shows that the expected dispatching solution is achieved after 12 iterations utilizing the 

proposed method, in which the operating cost increased only by 1.12% with respect to the result 

of OPF. The table also shows that the final operating cost and stability levels of the proposed and 

TDS-based methods are very similar. Although the results of the proposed method are slightly 

over-stabilized in this case, it is 174675/549≈318 times faster. Remarkably, the prediction time 

for each iteration (15,600 cases) is revealed in Table 4.18. It can be seen that once the ML-based 

model is trained, it can make predictions rapidly for the preconceived fault scenarios. In fact, for 

the proposed method, most of the time consumed at each iteration is in solving power flows for 

generating Ω OP. The results and comparison verify the effectiveness of the proposed method. 

Table 4.15: Selected IM patterns, ΩL, and the 𝛼𝑘 and 𝛽𝑘 set for dispatching. 

𝑘 I  details (Ω𝑘
C) 𝛼𝑘 (s) 𝛽𝑘 (%) ΩL  

1 (SG7166) 0.20 

95 

(lines between bus-bus) 

62-64, 119-120, 119-121, 

134-184, 140-182, 162-164, 

162-165, 163-164, 165-166, 

190-231, 191-192, 191-225, 

214-215 

2 All SGs except (SG63) 0.20 

3 (SG119) 0.15 

4 (SG119 and SG124) 0.15 

5 (SG185) 0.15 

6 (SG7139) 0.15 

7 (SG190) 0.15 

8 (SG191) 0.15 

9 (SG213, SG242, and SG243) 0.20 

Table 4.16: Selected one hour wind power data. 

WPP Selected time period 

(MM/DD/YY hr:min) 
Output* 

1 10/16/16 15:10–16:10 211.19 MW 

2 11/28/17 16:50–17:50 308.34 MW 

3 11/20/17 15:55–16:55 89.18 MW 

4 03/24/15 04:35–05:35 491.56 MW 

5 02/07/15 17:20–18:20 398.50 MW 

6 08/29/15 05:35–06:35 186.07 MW 

*Expected (average) output of each WPP in the following hour. 
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Table 4.17: Comparison of different methods. 

IM 
Value (%) of 𝜌𝑘(CCT > 𝛼𝑘) 

OPF (m = 1) Proposed TDS-based 

1 81.57 96.15 95.18 

2 0.00 100 100 

3 42.85 95.92 95.53 

4 15.43 100 99.68 

5 1.57 100 100 

6 40.60 95.71 95.11 

7 27.69 95.29 95.04 

8 0.00 96.06 95.13 

9 14.64 96.69 95.38 

Comparative item OPF (m = 1) Proposed TDS-based 

k$/h 521.72 527.56 527.07 

Time consumed (s) – 549 174675 

Iterations – 12 9 

Table 4.18: Prediction time of the trained model at each iteration (15,600 Cases). 

 CCT IM 

Time consumed (s) 4.91  0.11 

Total (s) 5.02 

4.5 Discussions 

This section further discusses the possible problems and countermeasures of the proposed 

method in practice 

• Topology changes of a power system during its operating horizon 

The proposed method is capable of addressing possible topology changes in a power system. 

There are three approaches to realize this: 
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The first approach is to consider topological changes while generating the training database 

that results in prediction models that can predict stability for various system layouts. For example, 

in the studies reported in [17], offline dataset is generated in a way that 85%, 14%, and 1% of the 

whole cases are related to nominal-power network topology, N−1, and N−2 working conditions, 

respectively. This approach can help maintain the prediction accuracy of the model when the 

topology of the system is changed slightly, basically covering the regular utility-known 

maintenance outages. 

The second approach is to consider the change in the topology during the generation of the 

training database and save the topology information as a feature. It should be noted that this can 

increase the size of the training data, the complexity of the prediction model, and the raining time. 

As a result, more complex machine learning algorithms like deep learning might be required. 

The third approach is to assign a prediction model to each possible topology structure of the 

system. This approach can result in more accurate prediction models compared to the first method, 

and the parallel computation allows to train multiple prediction models in a reasonable time frame. 

This method is adopted in [58], proved a superior performance in handling the topology changes 

of networks. This adjustment can also be used in the proposed method in a straightforward manner. 

• Scalability of the proposed method 

Generally, the size of the database required to train the prediction model would increase with 

the growth of system complexity. Fortunately, considering the generation of the database and the 

training process are carried out offline, the calculation time of online operation is barely affected. 

In addition, the parallel computing technique can significantly accelerate the database generation 

and training process. In terms of the online application, the increase in system scale has a limited 

impact on online operation time. For example, in this study, it takes the trained model about 0.7 s 

and 3.3 s to predicted 10,000 cases for IEEE 68- and 300-bus test systems, respectively. Therefore, 

this should not be a problem for the proposed method. 

4.6 Summary 

The challenges of power dispatch for high wind power-integrated systems considering PTSCs 

are presented and a novel method is proposed. To overcome the necessity of running massive 
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TDSs, a highly efficient ML-based technique is incorporated to predict CCT and IMs for possible 

fault scenarios. Next, a set of IM-categorized PTSCs are constructed, and different probabilistic 

stability standards are set against different faults. A method to convert the PTSCs into explicit 

dispatching constraints is also presented, such that the constraints are embedded into conventional 

OPF formulation for dispatch rescheduling. The method is compatible with various types of 

uncertainties and dynamic models in power systems. The effectiveness of the proposed method is 

validated on two IEEE test systems, demonstrating superior performance in terms of providing 

high-quality solutions and computational efficiency. The proposed method is much faster than a 

TDS-based method, while the solution is quite close (less than 0.1% difference in operating cost). 

The main contributions of this chapter are threefold: 

(1) An ML technique is utilized, for the first time, to solve the power dispatch problem 

considering PTSCs. Compared to the existing methods, the proposed method can rapidly 

evaluate the stability status for a system considering uncertainties without reducing the test 

scenarios, 

(2) IM-categorized PTSCs are formulated to facilitate the dispatching plan against various 

faults considering uncertainties, and enables operators to set flexible probabilistic stability 

levels for each IM to be prevented, and 

(3) The sensitivity of the probabilistic level of CCT to the active power generated from the 

critical generators is proposed, whereby the PTSCs can be converted into a set of explicit 

dispatching constraints; thus, the dispatch is rescheduled to ensure the probabilistic stability 

requirements are met at an economical operating cost. 
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5 Conclusions and Suggestions for Future Work 

5.1 Conclusions 

This thesis addresses the transient stability problem of power systems with high wind power 

penetration from two perspectives: rapid prediction and preventive dispatch. 

In this regard, the challenges of transient stability prediction for wind power-integrated power 

systems are analyzed. In response, a novel prediction approach is proposed taking advantage of 

the ML technique and the newly defined SI vector. Specifically, the SI vector is served as an input 

feature, and an ensemble learning technique is applied to train a prediction model. The numerical 

test reveals the superiority of the SI vector for stability prediction. Notably, with increasing wind 

power penetration, the proposed method has a distinct advantage in terms of accuracy compared 

to other recently published methods. The reason is that each 𝑆𝐼 vector correlates with a set of 

stability margins of a WPP-connected power system. Therefore, as a feature, it is more informative 

and discriminative. Furthermore, it has been demonstrated that the proposed are quite robust to the 

changes in the system typology.  

Moreover, this study conducted in this thesis introduced the difficulties in preventive dispatch 

for high wind power-integrated electrical systems, and accordingly, an ML-incorporated 

preventive probabilistic transient stability power dispatch method is developed. Specifically, the 

proposed method can rapidly evaluate the stability status of a system for a massive possible 

operating scenarios, and reschedule the power generation to ensure the probabilistic stability 

requirements of the system are met at an economical operating cost. The proposed approach is 

tested on two IEEE test systems with a high level of wind power penetration, reporting high 

computational efficiency and high-quality solutions. Remarkably, compared to the existing 

methods, the proposed approach enables operators to set flexible probabilistic stability 
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requirements for different IM to be prevented. The proposed method can also be flexibly applied 

to power systems of different scales, and systems with different types of renewables and dynamic 

models. 

5.2 Suggestions for Future Works 

The existing ML applications in the power systems have brought a brand new perspective to the 

entire industry, and huge potential still remain to be further explored. The thesis introduced two 

examples of incorporating ML-techniques into power system against rotor angle instability, further 

study can be extend to improve the accuracy, efficiency and general applicability of the methods, 

and more importantly, explore how ML-techniques can be further and better applied to solve 

stability-related and other issues in power systems. For future extension of this study, the following 

research works are recommended: 

• Explore more effective ML-incorporated methods for rotor angle prediction  

For the performances of all existing perdition models, there is still room for improvement in the 

accuracy and robustness. This may be addressed from two ends, including 1) explore a more 

effective feature for prediction, and 2) build more problem-specific ML algorithm structures. 

Specifically speaking, 1) relates to feature selection and feature extraction studies. It requires 

researchers to fully consider the physical characteristics of power systems and explore the feature 

that better reflect the problem. In addition, it may be necessary to develop different feature 

extraction algorithms for power systems with different types or even proportions of power 

electronic-based components (e.g., HVDC, FACTS devices, battery storage system, etc.). For 2), 

directly introduce the existing ML-algorithms to train a model may restrict the prediction 

performance. In fact, the prediction performance can be further improved by modifying and 

reorganizing the ML algorithm structure according to the nature of the problem. The work in this 

area including the building of neural network structure, design of loss function and training process, 

etc.  

• Rapid remedy control strategies 

Chapters 2 and 3 discussed the method of transient stability prediction. However, the follow-up 

remedy control strategies for predicted unstable systems have yet to be addressed. Further study 
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can explore the rapid critical generator identification method, and a set of rapid control strategies 

to avoid the system from being unstable or minimize the consequence. It also recommend to 

conduct study on how virtual inertia, battery energy storage system can provide remedy support to 

prevent system instability. 

• Extend the application of the preventive dispatch framework 

The preventive dispatch method proposed in chapter 4 could be further extended to a day-ahead 

dispatch method and be developed as a unit commitment tool with consideration of economic 

efficiency and probabilistic transient stability. In addition, the framework may be improved to 

handle significant changes in the system topology and other situations such as under-frequency 

load shedding. Other state-of-the-art ML techniques may also be applied to power system 

preventive dispatch to achieve high-quality solutions in shorter response times. 

• Study on autonomous control of power system based on reinforcement learning  

The application of reinforcement learning (RL) in power system real-time control is another 

promising extend research. RL is an area of ML concerned with how intelligent agents ought to 

take actions in an environment in order to maximize the notion of cumulative reward. In power 

system field, this technique has been tested on some areas, including energy management and 

demand response. Nevertheless, the application of RL on stability-related issues is relatively 

undeveloped. Further study can be conducted on RL-based autonomous control of power system 

for stability enhancement. 
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 Formulation of 𝝃𝟏—𝝃𝟑 and 𝜼𝟏– 𝜼𝟔 

For simplicity, assume that during fault period the value of 𝑽 can be considered as 𝑽(𝑡f+); thus 

given (2.14)—(2.15), (2.24)–(2.31), and (2.43), 𝜉1—𝜉3 can be derived as (A.1)–(A.3). Actually, 

during fault period, the real time value of 𝑽 which are obtainable from PMUs can also be used for 

calculating (2.45) without loss of generality. 𝜂1– 𝜂6 are derived as (A.4) –(A.9) considering(2.14), 

(2.24)–(2.31), and (2.43).  

𝜉1 =
𝑀𝑅

𝑀𝑇
𝑬𝐶

TRe(𝒀𝐶𝐺(𝑡f+))𝑽𝐺(𝑡f+) −
𝑀𝐶

𝑀𝑇
𝑬𝑅

TRe(𝒀𝑅𝐻(𝑡f+))𝑽𝐻(𝑡f+) 
(A.1) 

𝜉2 =
𝑀𝑅

𝑀𝑇
𝑬𝐶

TRe(𝒀𝐶𝐻(𝑡f+))𝑽𝐻(𝑡f+) −
𝑀𝐶

𝑀𝑇
𝑬𝑅

TRe(𝒀𝑅𝐺(𝑡f+))𝑽𝐺(𝑡f+) 
(A.2) 

𝜉3 =
𝑀𝑅

𝑀𝑇
𝑬𝐶

TIm(𝒀𝐶𝐻(𝑡f+))𝑽𝐻(𝑡f+) −
𝑀𝐶

𝑀𝑇
𝑬𝑅

TIm(𝒀𝑅𝐺(𝑡f+))𝑽𝐺(𝑡f+) 
(A.3) 

𝜂1 =
𝑀𝐶

𝑀𝑇
𝑬𝑅

TRe(𝒀𝑅𝐻(𝑡  +))(𝑽𝐻(𝑡  +) − 𝑲𝐻𝛿(𝑡  ))

−
𝑀𝑅

𝑀𝑇
𝑬𝐶

TRe(𝒀𝐶𝐺(𝑡  +))(𝑽𝐺(𝑡  +) − 𝑲𝐺𝛿(𝑡  )) 

(A.4) 

𝜂2 =
𝑀𝐶

2𝑀𝑇
𝑬𝑅

TRe(𝒀𝑅𝐻(𝑡  +))𝑲𝐻 −
𝑀𝑅

2𝑀𝑇
𝑬𝐶

TRe(𝐘𝐶𝐻(𝑡  +))𝑲𝐻 
(A.5) 

𝜂3 =
𝑀𝐶

𝑀𝑇
𝑬𝑅

TRe(𝒀𝑅𝐺(𝑡  +))(𝑽𝐺(𝑡  +) − 𝑲𝐺𝛿(𝑡  ))

+
𝑀𝑅

𝑀𝑇
𝑬𝐶

TRe(𝒀𝐶𝐻(𝑡  +))(𝑲𝐻𝛿(𝑡  ) − 𝑽𝐻(𝑡  +)) 

(A.6) 

𝜂4 =
𝑀𝐶

𝑀𝑇
𝑬𝑅

TIm(𝒀𝑅𝐺(𝑡  +))(𝑽𝐺(𝑡  +) − 𝑲𝐺𝛿(𝑡  ))

+
𝑀𝑅

𝑀𝑇
𝑬𝐶

TIm(𝒀𝐶𝐻(𝑡  +))(𝑽𝐻(𝑡  +) − 𝑲𝐻𝛿(𝑡  )) 

(A.7) 
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𝜂5 =
𝑀𝐶

𝑀𝑇
𝑬𝑅

TRe(𝒀𝑅𝐺(𝑡  +))𝑲𝐺 −
𝑀𝑅

𝑀𝑇
𝑬𝐶

TRe(𝒀𝐶𝐻(𝑡  +))𝑲𝐻 
(A.8) 

𝜂6 = −
𝑀𝐶

𝑀𝑇
𝑬𝑅

TIm(𝒀𝑅𝐺(𝑡  +))𝑲𝐺 −
𝑀𝑅

𝑀𝑇
𝑬𝐶

TIm(𝒀𝐶𝐻(𝑡  +))𝑲𝐻 
(A.9) 
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 Parameters of the Components in the 

Modified IEEE 16-Machine 68-Bus Test System 

Table B.1: Parameters of the SGs. 

Description SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG8 

MBASE 

(MVA) 
600 600 700 700 600 800 600 600 

T'do (s) 10.2 10.2 5.7 5.69 5.4 7.3 5.66 6.7 

T''do (s) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

T'qo (s) 1.5 1.5 1.5 1.5 0.44 0.4 1.5 0.41 

T''qo (s) 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 

H (s) 7 7 5.1143 4.0857 4.3333 4.35 4.4 4.05 

D (pu) 0 0 0 0 0 0 0 0 

Xd (pu) 0.6 0.6 1.7465 1.834 1.98 2.032 1.77 1.74 

Xq (pu) 0.414 0.414 1.659 1.806 1.86 1.928 1.752 1.68 

X'd (pu) 0.186 0.186 0.3717 0.3052 0.396 0.4 0.294 0.342 

X'q (pu) 0.25 0.25 0.5 0.41 0.53 0.54 0.4 0.46 

X'' (pu) 0.15 0.15 0.315 0.245 0.3 0.32 0.24 0.27 

Xℓ (pu) 0.075 0.075 0.2128 0.2065 0.162 0.1792 0.1932 0.168 

S1.0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

S1.2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Description SG9 SG10 SG11 SG12 SG13 SG14 SG15 SG16 

MBASE 900 650 1700 1500 10000 8700 8700 8000 

T'do 4.79 9.37 4.1 7.4 5.9 4.1 4.1 7.8 

T''do 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

T'qo 1.96 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

T''qo 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 

H 3.8333 4.7692 1.6588 6.1533 4.96 3.4483 3.4483 5.625 

D 0 0 0 0 0 0 0 0 

Xd 1.8954 1.0985 2.176 1.515 1.48 1.566 1.566 1.424 

Xq 1.845 0.7475 2.091 1.425 1.43 1.5051 1.5051 1.336 

X'd 0.513 0.297 0.306 0.465 0.275 0.248 0.248 0.284 

X'q 0.69 0.4 0.41 0.63 0.37 0.33 0.33 0.38 
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Table B.1 Continued 

X'' 0.405 0.26 0.204 0.375 0.2 0.2001 0.2001 0.22 

Xℓ 0.2682 0.075 0.075 0.075 0.075 0.075 0.075 0.075 

S1.0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

S1.2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 

Table B.2: Parameters of the excitation systems (SG9 excluded). 

Description SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG8 

Type DC4B DC4B DC4B DC4B DC4B DC4B DC4B DC4B 

TR 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

KP 200 200 200 200 200 200 200 200 

KI 50 50 50 50 50 50 50 50 

KD 50 50 50 50 50 50 50 50 

TD 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

VRMAX 10 10 10 10 10 10 10 10 

VRMIN -10 -10 -10 -10 -10 -10 -10 -10 

KA 1 1 1 1 1 1 1 1 

TA 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

KE 1 1 1 1 1 1 1 1 

TE 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 

KF 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

TF 1 1 1 1 1 1 1 1 

VEMIN -10 -10 -10 -10 -10 -10 -10 -10 

E1 3.9267 3.9267 3.9267 3.9267 3.9267 3.9267 3.9267 3.9267 

SE(E1) 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 

E2 5.2356 5.2356 5.2356 5.2356 5.2356 5.2356 5.2356 5.2356 

SE(E2） 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 

Description SG10 SG11 SG12 SG13 SG14 SG15 SG16  

Type DC4B DC4B DC4B DC4B DC4B DC4B DC4B  

TR 0.01 0.01 0.01 0.01 0.01 0.01 0.01  

KP 200 200 200 200 200 200 200  

KI 50 50 50 50 50 50 50  

 



94 

 

Table B.2 Continued 

KD 50 50 50 50 50 50 50  

TD 0.01 0.01 0.01 0.01 0.01 0.01 0.01  

VRMAX 10 10 10 10 10 10 10  

VRMIN -10 -10 -10 -10 -10 -10 -10  

KA 1 1 1 1 1 1 1  

TA 0.02 0.02 0.02 0.02 0.02 0.02 0.02  

KE 1 1 1 1 1 1 1  

TE 0.785 0.785 0.785 0.785 0.785 0.785 0.785  

KF 0.03 0.03 0.03 0.03 0.03 0.03 0.03  

TF 1 1 1 1 1 1 1  

VEMIN -10 -10 -10 -10 -10 -10 -10  

E1 3.9267 3.9267 3.9267 3.9267 3.9267 3.9267 3.9267  

SE(E1) 0.07 0.07 0.07 0.07 0.07 0.07 0.07  

E2 5.2356 5.2356 5.2356 5.2356 5.2356 5.2356 5.2356  

SE(E2） 0.91 0.91 0.91 0.91 0.91 0.91 0.91  

 

Table B.3: Parameters of the excitation system (SG9). 

Description SG9 

Type SEXS 

TA/TB 0 

TB 0.01 

K 200 

TE 0 

EMIN -5 
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Table B.4: Parameters of the stabilizers.  

Description SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG8 

Type IEEEST IEEEST IEEEST IEEEST IEEEST IEEEST IEEEST IEEEST 

A1 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

A2 0 0 0 0 0 0 0 0 

A3 0 0 0 0 0 0 0 0 

A4 0 0 0 0 0 0 0 0 

A5 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

A6 0 0 0 0 0 0 0 0 

T1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

T2 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

T3 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

T4 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

T5 15 15 15 15 15 15 15 15 

T6 15 15 15 15 15 15 15 15 

KS 20 20 20 20 20 20 20 20 

LSMAX 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

LSMIN -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 

VCU 0 0 0 0 0 0 0 0 

VCL 0 0 0 0 0 0 0 0 

Description SG9 SG10 SG11 SG12 SG13 SG14 SG15 SG16 

Type IEEEST IEEEST IEEEST IEEEST IEEEST IEEEST IEEEST IEEEST 

A1 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

A2 0 0 0 0 0 0 0 0 

A3 0 0 0 0 0 0 0 0 

A4 0 0 0 0 0 0 0 0 

A5 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

A6 0 0 0 0 0 0 0 0 

T1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

T2 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

T3 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

T4 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

T5 15 15 15 15 15 15 15 15 

T6 15 15 15 15 15 15 15 15 

KS 20 20 20 20 20 20 20 20 

LSMAX 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

LSMIN -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 

VCU 0 0 0 0 0 0 0 0 

VCL 0 0 0 0 0 0 0 0 
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Table B.5: Parameters of the electrical control model of the DFIGs. 

Description Value 

Tfv, Filter time constant in voltage regulator (sec) 0.15 

 Kpv, Proportional gain in voltage regulator (pu) 18 

KIV, Integrator gain in voltage regulator (pu)  5 

Xc, Line drop compensation reactance (pu)  0 

TFP, Filter time constant in torque regulator  0.05 

Kpp, Proportional gain in torque regulator (pu) 3 

KIP, Integrator gain in torque regulator (pu)  0.6 

PMX, Max limit in torque regulator (pu)  1.12 

PMN, Min limit in torque regulator (pu)  0.04 

QMX, Max limit in voltage regulator (pu)  0.436 

QMN, Min limit in voltage regulator (pu)  -0.436 

IPMAX, Max active current limit  1.1 

TRV, Voltage sensor time constant 0.02 

RPMX, Max power order derivative  0.45 

RPMN, Min power order derivative -0.45 

T_Power, Power filter time constant  5 

Kqi, MVAR/Voltage gain  0.1 

VMINCL,Min voltage limit  0.9 

VMAXCL, Max voltage limit  1.1 

Kqv, Voltage/MVAR gain 40 

XIQmin  0.5 

XIQmax 1.45 

Tv, Lag time constant in WindVar controller  0.05 

Tp, Pelec filter in fast PF controller 0.05 

Fn, A portion of online wind turbines  1 

𝜔Pmin, Shaft speed at Pmin (pu) 0.3 

𝜔P20, Shaft speed at 20% rated power (pu)  0.69 

𝜔P40, Shaft speed at 40% rated power (pu)  0.78 

𝜔P60, Shaft speed at 60% rated power (pu) 0.98 

Pmin, Minimum power for operating at 𝜔P100 speed (pu)  0.74 

𝜔P100, Shaft speed at 100% rated power (pu) 1.2 
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Table B.6: Parameters of the generator/converter model of the DFIGs. 

Description Value 

Tiqcmd, Converter time constant for IQcmd  0.02 

Tipcmd, Converter time constant for IPcmd  0.02 

KPLL, PLL gain 0 

KIPLL, PLL integrator gain 0 

PLLMAX, PLL max. limit 0.1 

Prated 1.5 

VLVPL1, LVPL voltage 1 Low voltage power logic  0.5 

VLVPL2, LVPL voltage 2  0.9 

GLVPL, LVPL gain 1.11 

VHVRCR, High Voltage Reactive Current (HVRC) logic, 

pu voltage  1.2 

CURHVRCR, HVRC logic, current (pu)  2 

RIp_LVPL, Rate of active current change 5 

T_LVPL, Voltage sensor for LVPL, second 0.02 

 

Table B.7: Parameters of the mechanical control (wind turbine) model of the DFIGs. 

Description Value 

VW, Initial wind, (pu of rated wind speed) 1.25 

H, Total inertia constant, (sec) 4.95 

DAMP, Machine damping factor 0 

Kaero, Aerodynamic gain factor 0.007 

Theta2, Blade pitch at twice rated wind speed, (deg). 21.98 

Htfrac, Turbine inertia fraction (Hturb/H) 0 

Freq1, First shaft torsional resonant frequency (Hz) 1.8 

Dshaft, Shaft damping factor (pu) 1.5 
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Table B.8: Parameters of the pitch control model of the DFIGs. 

Description Value 

Tp, Blade response time constant 0.3 

Kpp, Proportional gain of PI regulator (pu)  150 

Kip, Integrator gain of PI regulator (pu) 25 

Kpc, Proportional gain of the compensator (pu)  3 

Kic, Integrator gain of the compensator (pu)  30 

TetaMin, Lower pitch angle limit (degrees)  0 

TetaMax, Upper pitch angle limit (degrees) 27 

RTetaMax, Upper pitch angle rate limit (degrees/sec)  10 

PMX, Power reference, pu on MBASE 1 
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 Cost function Coefficients of Each Generator 

Each generator in the system is subject to the standard cost function (C.1), and the cost function 

coefficients of each generator in the modified IEEE 16-machine 68-bus test system are listed in 

Table C.1. 

Cost = 𝑎0 + 𝑎1𝑃𝑖 + 𝑎2𝑃𝑖
2 ($/hour) 𝑖 ∈ Ωgen   (C.1) 

Table C.1: Cost function coefficients of each generator. 

Generator 

𝑎0 

($) 

𝑎1 

($/MWh) 

𝑎2 

($/MW2h) 

Pmax 

(MW) 

Pmin 

(MW) 

Qmin 

(MVAr) 

Qmin 

(MVAr) 

SG1 0 6.9 0.0193 375 100 148.5 -148.5 

SG2 0 3.7 0.0111 817.5 100 248.5 -248.5 

SG3 0 2.8 0.0104 975 100 280.5 -280.5 

SG4 0 4.7 0.0088 948 100 274.56 -274.56 

SG5 0 2.8 0.0128 757.5 100 232.65 -232.65 

SG6 0 3.7 0.0094 1050 100 297 -297 

SG7 0 4.8 0.0099 840 100 250.8 -250.8 

SG8 0 3.6 0.0113 810 100 244.2 -244.2 

SG9 0 3.7 0.0071 1200 100 330 -330 

SG10 0 3.9 0.009 750 100 231 -231 

SG11 0 4 0.005 1250 500 396 -396 

SG12 0 2.9 0.004 1687.5 500 511.5 -511.5 

SG13 0 2.5 0.0019 4488.8 2000 1060.29 -1060.29 

SG14 0 3.3 0.0033 2231.3 500 655.05 -655.05 

SG15 0 3.8 0.005 1250 500 396 -396 

SG16 0 3.5 0.0014 5000 3000 1386 -1386 
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