88 research outputs found
Detecting Illicit Drug Ads in Google+ Using Machine Learning
Opioid abuse epidemics is a major public health emergency in the US. Social media platforms have facilitated illicit drug trading, with significant amount of drug advertisement and selling being carried out online. In order to understand dynamics of drug abuse epidemics and design efficient public health interventions, it is essential to extract and analyze data from online drug markets. In this paper, we present a computational framework for automatic detection of illicit drug ads in social media, with Google+ being used for a proof-of-concept. The proposed SVM- and CNN-based methods have been extensively validated on the large dataset containing millions of posts collected using Google+ API. Experimental results demonstrate that our methods can efficiently identify illicit drug ads with high accuracy. Both approaches have been extensively validated using the dataset containing millions of posts collected using Google+ API. Experimental results demonstrate that both methods allow for accurate identification of illicit drug ads
Repression of Esophageal Neoplasia and Inflammatory Signaling by Anti-miR-31 Delivery In Vivo.
BACKGROUND: Overexpression of microRNA-31 (miR-31) is implicated in the pathogenesis of esophageal squamous cell carcinoma (ESCC), a deadly disease associated with dietary zinc deficiency. Using a rat model that recapitulates features of human ESCC, the mechanism whereby Zn regulates miR-31 expression to promote ESCC is examined.
METHODS: To inhibit in vivo esophageal miR-31 overexpression in Zn-deficient rats (n = 12-20 per group), locked nucleic acid-modified anti-miR-31 oligonucleotides were administered over five weeks. miR-31 expression was determined by northern blotting, quantitative polymerase chain reaction, and in situ hybridization. Physiological miR-31 targets were identified by microarray analysis and verified by luciferase reporter assay. Cellular proliferation, apoptosis, and expression of inflammation genes were determined by immunoblotting, caspase assays, and immunohistochemistry. The miR-31 promoter in Zn-deficient esophagus was identified by ChIP-seq using an antibody for histone mark H3K4me3. Data were analyzed with t test and analysis of variance. All statistical tests were two-sided.
RESULTS: In vivo, anti-miR-31 reduced miR-31 overexpression (P = .002) and suppressed the esophageal preneoplasia in Zn-deficient rats. At the same time, the miR-31 target Stk40 was derepressed, thereby inhibiting the STK40-NF-κΒ-controlled inflammatory pathway, with resultant decreased cellular proliferation and activated apoptosis (caspase 3/7 activities, fold change = 10.7, P = .005). This same connection between miR-31 overexpression and STK40/NF-κΒ expression was also documented in human ESCC cell lines. In Zn-deficient esophagus, the miR-31 promoter region and NF-κΒ binding site were activated. Zn replenishment restored the regulation of this genomic region and a normal esophageal phenotype.
CONCLUSIONS: The data define the in vivo signaling pathway underlying interaction of Zn deficiency and miR-31 overexpression in esophageal neoplasia and provide a mechanistic rationale for miR-31 as a therapeutic target for ESCC
Characteristics of Bitcoin Transactions on Cryptomarkets
Cryptomarkets (or darknet markets) are commercial hidden-service websites that operate on The Onion Router (Tor) anonymity network. Cryptomarkets accept primarily bitcoin as payment since bitcoin is pseudonymous. Understanding bitcoin transaction patterns in cryptomarkets is important for analyzing vulnerabilities of privacy protection models in cryptocurrecies. It is also important for law enforcement to track illicit online crime activities in cryptomarkets. In this paper, we discover interesting characteristics of bitcoin transaction patterns in cryptomarkets. The results demonstrate that the privacy protection mechanism in cryptomarkets and bitcoin is vulnerable. Adversaries can easily gain valuable information for analyzing trading activities in cryptomarkets
Zinc deficiency activates S100A8 inflammation in the absence of COX-2 and promotes murine oral-esophageal tumor progression
Zinc (Zn)-deficiency (ZD) is implicated in the pathogenesis of human oral-esophageal cancers. Previously, we showed that in ZD mice genetic deletion of cyclooxygenase-2 (Cox-2) enhances N-nitrosomethylbenzylamine-induced forestomach carcinogenesis. By contrast, Cox-2 deletion offers protection in Zn-sufficient (ZS) mice. We hypothesize that ZD activates pathways insensitive to COX-2 inhibition, thereby promoting carcinogenesis. This hypothesis is tested in a Cox-2−/− mouse tongue cancer model that mimics pharmacologic blockade of COX-2 by firstly examining transcriptome profiles of forestomach mucosa from Cox-2−/− and wild-type mice on a ZD vs. ZS diet, and secondly investigating the roles of identified markers in mouse forestomach/tongue preneoplasia and carcinomas. In Cox-2−/− mice exposed to the tongue carcinogen 4-nitroquinoline 1-oxide, dietary ZD elicited tongue/esophagus/forestomach carcinomas that were prevented by ZS. The precancerous ZD:Cox-2−/−vs. ZS:Cox-2−/− forestomach had an inflammatory signature with upregulation of the proinflammation genes S100a8 and S100a9. Bioinformatics analysis revealed overrepresentation of inflammation processes comprising S100a8/a9 and an nuclear factor (NF)-κB network with connectivity to S100A8. Immunohistochemistry revealed co-overexpression of S100A8, its heterodimeric partner S100A9, the receptor for advanced glycation end-products (RAGE), NF-κB p65, and cyclin D1, in ZD:Cox-2−/− forestomach/tongue preneoplasia and carcinomas, evidence for the activation of a RAGE-S100A8/A9 inflammatory pathway. Accumulation of p53 in these carcinomas indicated activation of additional inflammatory pathways. Zn-replenishment in ZD:Cox-2−/−mice reversed the inflammation and inhibited carcinogenesis. Thus, ZD activates alternative inflammation-associated cancer pathways that fuel tumor progression and bypass the antitumor effect of Cox-2 ablation. These findings have important clinical implications, as combination cancer therapy that includes Zn may improve efficacy
Production of nanoparticles from natural hydroxylapatite by laser ablation
Laser ablation of solids in liquids technique has been used to obtain colloidal nanoparticles from biological hydroxylapatite using pulsed as well as a continuous wave (CW) laser. Transmission electron microscopy (TEM) measurements revealed the formation of spherical particles with size distribution ranging from few nanometers to hundred nanometers and irregular submicronic particles. High resolution TEM showed that particles obtained by the use of pulsed laser were crystalline, while those obtained by the use of CW laser were amorphous. The shape and size of particles are consistent with the explosive ejection as formation mechanism
Industry/University Collaboration at the University of Michigan-Dearborn: A Focus on Relevant Technology
https://deepblue.lib.umich.edu/bitstream/2027.42/154106/1/kampfner1998.pd
Potential Geographic Distribution of Brown Marmorated Stink Bug Invasion (Halyomorpha halys)
BACKGROUND: The Brown Marmorated Stink Bug (BMSB), Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), native to Asia, is becoming an invasive species with a rapidly expanding range in North America and Europe. In the US, it is a household pest and also caused unprecedented damage to agriculture crops. Exploring its climatic limits and estimating its potential geographic distribution can provide critical information for management strategies. METHODOLOGY/PRINCIPALS: We used direct climate comparisons to explore the climatic niche occupied by native and invasive populations of BMSB. Ecological niche modelings based on the native range were used to anticipate the potential distribution of BMSB worldwide. Conversely, niche models based on the introduced range were used to locate the original invasive propagates in Asia. Areas with high invasion potential were identified by two niche modeling algorithms (i.e., Maxent and GARP). CONCLUSIONS/SIGNIFICANCE: Reduced dimensionality of environmental space improves native model transferability in the invade area. Projecting models from invasive population back to native distributional areas offers valuable information on the potential source regions of the invasive populations. Our models anticipated successfully the current disjunct distribution of BMSB in the US. The original propagates are hypothesized to have come from northern Japan or western Korea. High climate suitable areas at risk of invasion include latitudes between 30°-50° including northern Europe, northeastern North America, southern Australia and the North Island of New Zealand. Angola in Africa and Uruguay in South America also showed high climate suitability
- …