19 research outputs found

    A preliminary study newly develped baseball technique in batting

    Get PDF

    Diffusion and transfer of entanglement in an array of inductively coupled flux qubits

    No full text
    A theoretical scheme to generate multipartite entangled states in a Josephson planar-designed architecture is reported. This scheme improves the one published by Migliore [Phys. Rev. B 74, 104503 (2006)] since it speeds up the generation of W entangled states in an MxN array of inductively coupled Josephson flux qubits by reducing the number of necessary steps. In addition, the same protocol is shown to be able to transfer the W state from one row to the other

    A preliminary study newly develped baseball technique in batting

    No full text

    Derivation of Transgene-Free Human Induced Pluripotent Stem Cells from Human Peripheral T Cells in Defined Culture Conditions

    No full text
    <div><p>Recently, induced pluripotent stem cells (iPSCs) were established as promising cell sources for revolutionary regenerative therapies. The initial culture system used for iPSC generation needed fetal calf serum in the culture medium and mouse embryonic fibroblast as a feeder layer, both of which could possibly transfer unknown exogenous antigens and pathogens into the iPSC population. Therefore, the development of culture systems designed to minimize such potential risks has become increasingly vital for future applications of iPSCs for clinical use. On another front, although donor cell types for generating iPSCs are wide-ranging, T cells have attracted attention as unique cell sources for iPSCs generation because T cell-derived iPSCs (TiPSCs) have a unique monoclonal T cell receptor genomic rearrangement that enables their differentiation into antigen-specific T cells, which can be applied to novel immunotherapies. In the present study, we generated transgene-free human TiPSCs using a combination of activated human T cells and Sendai virus under defined culture conditions. These TiPSCs expressed pluripotent markers by quantitative PCR and immunostaining, had a normal karyotype, and were capable of differentiating into cells from all three germ layers. This method of TiPSCs generation is more suitable for the therapeutic application of iPSC technology because it lowers the risks associated with the presence of undefined, animal-derived feeder cells and serum. Therefore this work will lead to establishment of safer iPSCs and extended clinical application.</p></div

    Characterization of M-TiPSCs generated under a defined culture condition.

    No full text
    <p>(A): ALP staining in M-TiPSCs. (B): QT-PCR analyses of M-TiPSCs for the ESC marker genes <i>OCT3/4</i>, <i>NANOG</i>, <i>SOX2</i>, <i>KLF4</i>, <i>c-MYC</i>, and <i>TERT1</i>. (C): QT-PCR analyses of M-TiPSCs for the transgenes, <i>OCT3/4</i>, <i>SOX2</i>, <i>KLF4</i>, and <i>c-MYC</i>. (D): Immunofluorescence staining for pluripotency and surface markers (NANOG, OCT3/4, SSEA3, SSEA4, TRA-1–60, and TRA-1–81) in M-TiPSCs1. (E): Heat map analyses of M-TiPSCs, ESCs, and the parental human T cells. (F): Scatter plots comparing the global gene expression profiles of M-TiPSCs with those of T cells and ESCs.</p

    In vitro and in-TiPSCs.

    No full text
    <p>(A): Immunofluorescence staining for Sox17 (endodermal marker), αSMA (mesodermal marker), and Nestin (ectodermal marker) in each TiPSCs1-derived differentiated cell in vitro. (B): Gross morphology of representative teratomas derived from TiPSCs1 in vivo (hematoxylin and eosin staining).</p

    Analysis of TiPSCs genome modification and karyotype.

    No full text
    <p>(A): Bisulfite sequencing analysis of the <i>NANOG</i> and <i>OCT3/4</i> promoter regions in peripheral T cells, ESCs, and M-TiPSCs. Each row of circles for a given amplicon represents the methylation status of the CpG dinucleotides in one bacterial clone for that region. Open circles represent unmethylated CpGs and closed circles represent methylated CpGs. (B): G-band analysis for karyotypes of M-TiPSCs generated under a defined culture condition. M-TiPSCs1 and M-TiPSCs2 at passages 6 and 15, respectively, were used for G-band analysis. (C): Analysis of TCR rearrangements. V, D, and J segment usages in the <i>TCRB</i> gene locus were sequenced and identified by comparison to the international ImMunoGeneTics information system database. M-TiPSCs showed rearrangements of Vβ/Dβ1,2 and Dβ1,2/Jβ2.</p

    Generation of human TiPSCs under defined conditions.

    No full text
    <p>(A): Strategy used in the present study for reprogramming T cells. (B): Typical ESC-like TiPSC colony on day 25 after blood sampling under the defined culture condition. (C): Comparison of reprogramming efficiencies between the culture system using a feeder cell layer and that using defined culture conditions. Data show the mean ± s.d. (D): Comparison of representative 10-cm dishes stained for ALP (red spots) between feeder layer condition and defined culture condition (Matrigel) on day 25. (E): Comparison of reprogramming efficiencies between a culture system using a feeder cell layer and one using Matrigel and mTeSR1 medium for samples from five donors. Data show the mean ± s.d.</p
    corecore