1,858 research outputs found

    Oscillations of the purity in the repeated-measurement-based generation of quantum states

    Full text link
    Repeated observations of a quantum system interacting with another one can drive the latter toward a particular quantum state, irrespectively of its initial condition, because of an {\em effective non-unitary evolution}. If the target state is a pure one, the degree of purity of the system approaches unity, even when the initial condition of the system is a mixed state. In this paper we study the behavior of the purity from the initial value to the final one, that is unity. Depending on the parameters, after a finite number of measurements, the purity exhibits oscillations, that brings about a lower purity than that of the initial state, which is a point to be taken care of in concrete applications.Comment: 5 pages, 3 figure

    Injection and detection of spin in a semiconductor by tunneling via interface states

    Full text link
    Injection and detection of spin accumulation in a semiconductor having localized states at the interface is evaluated. Spin transport from a ferromagnetic contact by sequential, two-step tunneling via interface states is treated not in itself, but in parallel with direct tunneling. The spin accumulation induced in the semiconductor channel is not suppressed, as previously argued, but genuinely enhanced by the additional spin current via interface states. Spin detection with a ferromagnetic contact yields a weighted average of the spin accumulation in the channel and in the localized states. In the regime where the spin accumulation in the localized states is much larger than that in the channel, the detected spin signal is insensitive to the spin accumulation in the localized states and the ferromagnet probes the spin accumulation in the semiconductor channel.Comment: 7 pages, 2 figures. Theory onl

    Thermal spin current and magnetothermopower by Seebeck spin tunneling

    Full text link
    The recently observed Seebeck spin tunneling, the thermoelectric analog of spin-polarized tunneling, is described. The fundamental origin is the spin dependence of the Seebeck coefficient of a tunnel junction with at least one ferromagnetic electrode. Seebeck spin tunneling creates a thermal flow of spin-angular momentum across a tunnel barrier without a charge tunnel current. In ferromagnet/insulator/semiconductor tunnel junctions this can be used to induce a spin accumulation (\Delta \mu) in the semiconductor in response to a temperature difference (\Delta T) between the electrodes. A phenomenological framework is presented to describe the thermal spin transport in terms of parameters that can be obtained from experiment or theory. Key ingredients are a spin-polarized thermoelectric tunnel conductance and a tunnel spin polarization with non-zero energy derivative, resulting in different Seebeck tunnel coefficients for majority and minority spin electrons. We evaluate the thermal spin current, the induced spin accumulation and \Delta\mu/\Delta T, discuss limiting regimes, and compare thermal and electrical flow of spin across a tunnel barrier. A salient feature is that the thermally-induced spin accumulation is maximal for smaller tunnel resistance, in contrast to the electrically-induced spin accumulation that suffers from the impedance mismatch between a ferromagnetic metal and a semiconductor. The thermally-induced spin accumulation produces an additional thermovoltage proportional to \Delta\mu, which can significantly enhance the conventional charge thermopower. Owing to the Hanle effect, the thermopower can also be manipulated with a magnetic field, producing a Hanle magnetothermopower.Comment: 10 pages, 3 figures, 1 tabl

    Entanglement Purification through Zeno-like Measurements

    Full text link
    We present a novel method to purify quantum states, i.e. purification through Zeno-like measurements, and show an application to entanglement purification.Comment: 5 pages, 1 figure; Contribution to the Proceedings of "Mysteries, Puzzles and Paradoxes in Quantum Mechanics", Gargnano, Italy, 2003 (to be published in J. Mod. Opt.

    Distillation of Entanglement between Distant Systems by Repeated Measurements on Entanglement Mediator

    Get PDF
    A recently proposed purification method, in which the Zeno-like measurements of a subsystem can bring about a distillation of another subsystem in interaction with the former, is utilized to yield entangled states between distant systems. It is shown that the measurements of a two-level system locally interacting with other two spatially separated not coupled subsystems, can distill entangled states from the latter irrespectively of the initial states of the two subsystems.Comment: 11 pages, 2 figures; the version accepted for publication in Phys. Rev.

    Resonant Scattering Can Enhance the Degree of Entanglement

    Get PDF
    Generation of entanglement between two qubits by scattering an entanglement mediator is discussed. The mediator bounces between the two qubits and exhibits a resonant scattering. It is clarified how the degree of the entanglement is enhanced by the constructive interference of such bouncing processes. Maximally entangled states are available via adjusting the incident momentum of the mediator or the distance between the two qubits, but their fine tunings are not necessarily required to gain highly entangled states and a robust generation of entanglement is possible.Comment: 7 pages, 13 figure

    Enhancement of the transverse non-reciprocal magneto-optical effect

    Full text link
    The origin and properties of the transverse non-reciprocal magneto-optical (nMO) effect were studied. The transverse nMO effect occurs in the case when light propagates perpendicularly to the magnetic field. It was demonstrated that light can experience the transverse nMO effect only when it propagates in the vicinity of a boundary between two materials and the optical field at least in one material is evanescent. The transverse nMO effect is pronounced in the cases of surface plasmons and waveguiding modes. The magnitude of the transverse nMO effect is comparable to or greater than the magnitude of the longitudinal nMO effect. In the case of surface plasmons propagating at a boundary between the transition metal and the dielectric it is possible to magnify the transverse nMO effect and the magneto-optical figure-of-merit may increase from a few percents to above 100%. The scalar dispersion relation, which describes the transverse MO effect in cases of waveguide modes and surface plasmons propagating in a multilayer MO slab, was derived
    • …
    corecore