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I. INTRODUCTION

One of the key technologies for quantum information and
computation is purification/distillation of quantum states
[1,2]. Particular pure states, such as entangled states, often
play significant roles there, but it is not easy to find such
“clean” states in nature. It is therefore required to prepare
them out of mixed states; otherwise, we cannot carry out any
interesting ideas of quantum information and computation.

A different purification mechanism has recently been pro-
posed[3]. It is shown that repeated measurements on a sys-
tem, sayA, result in a purification of another system, sayB,
in interaction withA [4]. That is, the state ofB is driven to a
pure state irrespective of its(generally mixed) initial state, if
certain conditions are satisfied. Remarkably, if appropriate
adjustment of the relevant parameters is possible, the maxi-
mal yield, which is prescribed by the initial mixed state ofB
and its target pure state, can be attained, while keeping the
maximal fidelity, by a finite number of measurements onA
(an “optimal purification”). This constitutes a remarkable
contrast to the standard purification protocol[1,2], in which
it is generally difficult to realize both a nonvanishing yield
and the maximal fidelity at the same time.

Since an entangled state is one of the pure states of two
quantum systems, sayA and B, one can think of the possi-
bility of extracting the entangled state betweenA and B by
repeatedly performing measurements onX which interacts
with bothA andB. This possibility has already been pointed
out [5,6] and explored to show that one of the Bell states can
be extracted when this mechanism is applied to a three-qubit
system, where qubitsA andB always interact with the other
qubit X on which one and the same measurement is repeat-
edly performed. Notice that in this case the two systemsA
andB are not spatially separated, because they are supposed

to locally interact withX. On the other hand, it is often
required, e.g., in the ideas of quantum teleportation and com-
munication[2,7], to establish an entanglement between two
quantum systems that are located at or at least can be sent to,
without losing the entanglement, distant places. In this re-
spect, it would be worth remembering that interesting ideas
of generating an entanglement between two cavities[8] and
of transferring an entanglement between two modes in a cav-
ity to that between two other modes in different cavities[9]
have been proposed. In the former a two-level atom is sent to
interact successively with the two cavities resulting in the
generation of an entanglement between the two, and in the
latter the entanglement is shown to be transferred by a two-
level atom which passes through the two cavities and inter-
acts with the relevant cavity modes. In this paper, this kind of
successive interaction with two quantum systems is incorpo-
rated within the framework of the recent purification mecha-
nism [3,5,6] to show that an entanglement can be established
between the states of two systems spatially separated(or that
can be separated). Notice that the entangled state is distilled
from an arbitrary initial state that is in general mixed, while
in the generation of entanglement in Ref.[8] the initial state
should be prepared in an appropriate pure state and in the
transfer of entanglement in Ref.[9] the state is assumed to be
initially entangled.

After a brief review of the purification mechanism in Sec.
II, a scheme of successive interaction is introduced in a
three-qubit system,A+B+X, in which systemX is assumed
to interact first with systemA and then withB, in Sec. III.
SystemX is prepared in an initial pure state and is measured
after it has interacted withA andB. Then only those events
in which systemX is found in the initial state are kept. This
process is repeated many times. It is shown that an optimal
entanglement purification is actually realizable for a particu-
lar choice of interaction and by properly adjusting interaction
times and strengths betweenA and X and B and X. In Sec.
IV, another example of an entanglement purification is exam-
ined in a physical system where a two-level atomX is in-
jected successively to the two cavitiesA and B “back and
forth,” interacts with their cavity modes under the rotating-
wave approximation, and the state ofX is repeatedly mea-
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sured in a prescribed way. It is explicitly shown that, under
certain conditions, a particular entangled state between the
lowest two modes of each cavity is extracted, irrespective of
the initial cavity states. Finally, we summarize the results
obtained and give future perspectives in Sec. V.

II. PURIFICATION VIA REPEATED MEASUREMENTS

Let the total system consist of two parts, systemA and
systemB, and the dynamics be described by the total Hamil-
tonian

H = HA + HB + Hint, s2.1d

whereHint stands for the interaction between the two(sub)-
systems. We initially prepare the system in a product state

r0 = uflkfu ^ rBs0d s2.2d

at t=0. Notice that systemB can be in anarbitrary mixed
staterBs0d. We perform measurements onA at regular inter-
vals t to confirm that it is still in the stateufl [4], while the
total systemA+B during the timet evolves unitarily in terms
of the total HamiltonianH. Since the measurement is per-
formed only on systemA, the action of such a(projective, for
simplicity) measurement can be conveniently described by
the following projection operator:

O ; uflkfu ^ 1̂B. s2.3d

Thus the state of systemA is set back toufl every aftert,
while that ofB just evolves dynamically on the basis of the
total HamiltonianH. We repeat the same measurement, rep-
resented by Eq.(2.3) N times and collect only those events in
which systemA has been found in the stateufl consecutively
N times; other events are discarded. The state of systemB is
then described by the density matrix

rB
stdsNd = fVfstdgNrBs0dfVf

†stdgN/PstdsNd, s2.4d

where

Vfstd ; kfue−iHtufl s2.5d

is an operator acting onB and

PstdsNd = TrfsOe−iHtOdNr0sOeiHtOdNg

= TrBhfVfstdgNrBs0dfVf
†stdgNj s2.6d

is the probability for these events to occur(yield). This nor-
malization factor appearing in Eq.(2.4) reflects the fact that
only the right outcomes are collected in this process.

In order to examine the asymptotic state of systemB for
largeN, consider, assuming its existence, the spectral decom-
position of the operatorVfstd, which is not Hermitian,
VfstdÞVf

†std. We therefore need to set up both the right-
and left-eigenvalue problems

Vfstduunl = lnuunl, kvnuVfstd = lnkvnu. s2.7d

The eigenvalueln is complex valued in general, but its ab-
solute value is bounded[5]

0 ø ulnu ø 1. s2.8d

This reflects the unitarity of the time evolution operator
e−iHt. These eigenvectors are assumed to form a complete
orthonormal set in the following sense

o
n

uunlkvnu = 1̂B, kvnuuml = dnm. s2.9d

(We normalizeuunl askunuunl=1, while the norm ofkvnu has
been fixed by the above relations and is not necessarily
unity.) The operatorVfstd itself is now expanded in terms of
these eigenvectors

Vfstd = o
n

lnuunlkvnu. s2.10d

It is now easy to see that theNth power of this operator is
expressed as

fVfstdgN = o
n

ln
Nuunlkvnu s2.11d

and therefore it is dominated by a single term for largeN,

fVfstdgN ——→
large N

l0
Nuu0lkv0u, s2.12d

provided the largest(in magnitude) eigenvaluel0 is discrete,
nondegenerate, and unique. If these conditions are satisfied,
the density operator of systemB is driven to a pure state

rB
stdsNd ——→

large N

uu0lku0u s2.13d

with the probability

PstdsNd ——→
large N

ul0u2Nkv0urBs0duv0l. s2.14d

The pure stateuu0l, which is nothing but the right eigenvec-
tor of the operatorVfstd belonging to the largest(in magni-
tude) eigenvaluel0, is thus distilled in systemB. This is the
purification scheme proposed in[3].

A few comments are in order. First, the final pure state
uu0l toward which systemB is to be driven is dependent on
the choice of the stateufl on which systemA is projected
every after measurement, on the measurement intervalt, and
on the HamiltonianH, but does not depend on the initial
state of systemB at all. In this sense, the purification is
accomplished irrespective of the initial(mixed) staterBs0d.
Second, as is clear in the above exposition, what is crucial in
this purification scheme is the repetition of one and the same
measurement(more appropriately, spectral decomposition)
and the measurement intervalt need not be very small[4]. It
instead remains an adjustable parameter. Third, if we can
make other eigenvalues thanl0 much smaller in magnitude

uln/l0u ! 1 for n Þ 0, s2.15d

by adjusting parameters, we will need fewer steps(i.e.,
smallerN) to purify systemB.

It is now evident that the purification can be madeopti-
mal, if the conditions(2.15) and

COMPAGNOet al. PHYSICAL REVIEW A 70, 052316(2004)

052316-2



ul0u = 1 s2.16d

are satisfied. This condition(2.16) assures that we can repeat
as many measurements as we wish without running the risk
of losing the yieldPstdsNd in order to make the fidelity to the
target stateuu0l,

FstdsNd ; TrBfrB
stdsNduu0lku0ug, s2.17d

higher. Actually, the yieldPstdsNd decays like

PstdsNd = o
n,m

ln
Nlm

*NkvnurBs0duvmlkumuunl

——→
large N

ul0u2Nkv0urBs0duv0l s2.18d

and the condition(2.16) can bring us with the nonvanishing
yield kv0urBs0duv0l even in theN→` limit. Therefore the
condition (2.16) makes the two(sometimes not compatible)
demands, i.e.,higher fidelity and nonvanishing yield, achiev-
able, with fewer steps when the condition(2.15) is met. In
this sense, the purification is considered to be optimal.

It would be desirable if an optimal purification can be
realized by an appropriate choice of the stateufl and/or tun-
ing of the measurement intervalt and parameters in a given
Hamiltonian. A few simple systems have already been exam-
ined[3,5,6] to show how such optimal purifications are made
possible.

III. ENTANGLEMENT DISTILLATION IN A TWO-QUBIT
SYSTEM A+B BY AN ENTANGLEMENT

MEDIATOR X

Since an entangled state of systemA+B is one of the pure
states, there is a possibility that we apply the purification
mechanism described above to distill the initial(generally
mixed) state ofA+B to a desired entangled state. This pos-
sibility has already been pointed out and it has been explic-
itly demonstrated that one of the Bell statesuC−l of the two
qubit systemsA+B can actually be extracted if we repeatedly
measure one and the same state of another qubit systemX,
the interactions of which are symmetrical with respect toA
andB, resulting in the maximal yield[5,6]. One of the limi-
tations of this model is that the entanglement can be estab-
lished only when the two systemsA and B locally interact
with the same systemX at the same time and therefore it
does not seem to allow to establish an entanglement between
two systems that are spatially separated. A different scheme
is certainly needed.

When the two systemsA and B are spatially separated,
their local interactions with the other systemX cannot take
place simultaneously. This means that the interactions are
considered to become effective one by one, i.e., systemX
first interacts with, say, systemA and then withB [8,9]. This
kind of process can be conveniently described by a time-
dependent total Hamiltonian. In this section, a total system
composed of three qubits(or three spin-1/2 systems) A, B,
andX is considered. The two qubitsA andB interact with the
other qubitX successively, the state ofX, initially prepared in
a particular state, say in an up state, is measured after the

interactions withA andB, and only those events in which the
state ofX is found in the up state are retained and other
events are just discarded. The process is repeated many times
and we are interested in the resulting state ofA+B.

Assume that the three-qubit systemA+B+X is described
by a time-dependent total HamiltonianHstd. Qubit X, which
is initially prepared in up stateu↑Xl, is first brought to inter-
action with qubitA for time intervaltA. The Hamiltonian in
this period is

Hstd = H0 + HXA8 . s3.1ad

Next, after a free time evolution under the free Hamiltonian
H0 for time durationtA, qubit X interacts with another qubit
B, which has no direct interaction withA, for tB. The Hamil-
tonian for this period reads

Hstd = H0 + HXB8 . s3.1bd

After another free time evolution fortB, the state ofX is
measured and only those cases in which qubitX is found in
its initial up stateu↑Xl are retained. The whole process, i.e.,

interaction betweenX andA for tA

→ free evolution fortA

→ interaction betweenX andB for tB

→ free evolution fortB

→ projection tou↑Xl, s3.2d

will be repeated many times and we are interested in the final
state ofA+B. See Fig. 1.

In order to describe the above process explicitly and to
show the possibility of entanglement distillation by this pro-
cess, we consider the following free and interaction Hamil-
tonians:

H0 =
v

2
s1 + s3

sAdd +
v

2
s1 + s3

sBdd +
v

2
s1 + s3

sXdd, s3.3ad

HXA8 = gAs1
sXds1

sAd, HXB8 = gBs1
sXds1

sBd, s3.3bd

where thesi
sAd’s are Pauli matrices acting on the Hilbert

FIG. 1. QubitX, prepared inu↑Xl, is brought to interaction with
qubitsA andB successively and then its state is measured. If it is
found in u↑Xl, the whole process is repeated again; other events are
discarded.
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space of systemA and so on, andgA and gB are real(as-
sumed, for definiteness, to be positive) coupling constants.
The free Hamiltonians forA, B, andX are assumed to be the
same for simplicity and are characterized solely by the com-
mon energy gapv.

It is clear that the relevant evolution operator for the
whole process(3.2) is given by

V ; k↑Xue−iH0tBe−isH0+HXB8 dtBe−iH0tAe−isH0+HXA8 dtAu↑Xl. s3.4d

It is an elementary task to evaluate this operator, since each
factor on the right-hand side is easily evaluated in terms of
the eigenstates of the Hamiltonian in the exponent. Indeed,
we have

e−isH0+HXA8 dtAu↑Xl = e−ivtAs1+s3
sBdd/2−ivtAfu↑XlhscoswA − i sinwA cos 2uAdu↑Alk↑Au + cossgAtAdu↓Alk↓Auj

+ u↓Xlh− i sinwA sin 2uAu↓Alk↑Au − i sinsgAtAdu↑Alk↓Aujg, s3.5ad

and similarly

k↑Xue−isH0+HXB8 dtB = e−ivtBs1+s3
sAdd/2−ivtBfk↑XuhscoswB − i sinwB cos 2uBdu↑Blk↑Bu + cossgBtBdu↓Blk↓Buj

+ k↓Xuh− i sinwB sin 2uBu↑Blk↓Bu − i sinsgBtBdu↓Blk↑Bujg, s3.5bd

where the angleswAsBd anduAsBd are defined as

wAsBd = tAsBdÎv2 + gAsBd
2 , s3.6ad

sin 2uAsBd =
gAsBd

Îv2 + gAsBd
2

, s3.6bd

cos 2uAsBd =
v

Îv2 + gAsBd
2

. s3.6cd

Let us introduce a parity operatorP;s3
sAds3

sBd whose ei-
genvalues +1 and −1 single out two subspaces of the product
Hilbert spaceHA ^ HB invariant under the action of the op-
eratorV. The two statesu↑A↑Bl and u↓A↓Bl generate the even
parity subspace and the following 232 matrix M with its
elements

M11 = e−ivstA+2tA+tB+2tBdscoswA − i sinwA cos 2uAd

3scoswB − i sinwB cos 2uBd, s3.7ad

M12 = − e−ivtA sinwA sin 2uA sinsgBtBd, s3.7bd

M21 = − e−ivstB+2tBd sinsgAtAdsinwB sin 2uB, s3.7cd

M22 = cossgAtAdcossgBtBd s3.7dd

allows us to completely characterize the action ofV in this
subspace as follows:

VFu↑A↑Bl
u↓A↓Bl G = e−ivstA+tA+tB+tBdMFu↑A↑Bl

u↓A↓Bl G . s3.8d

We proceed in the same way for the odd parity subspace
spanned by the statesu↑A↓Bl and u↓A↑Bl. To this end we de-
fine the 232 matrix N with its elements

N11 = e−ivs2tA+tBdscoswA − i sinwA cos 2uAdcossgBtBd,

s3.9ad

N12 = − sinwA sin 2uA sinwB sin 2uB, s3.9bd

N21 = − e−ivstA+2tA+tBd sinsgAtAdsinsgBtBd, s3.9cd

N22 = e−ivstA+2tAd cossgAtAdscoswB − i sinwB cos 2uBd,

s3.9dd

so that the action ofV is represented as

VFu↑A↓Bl
u↓A↑Bl G = e−ivstA+tB+2tBdNFu↑A↓Bl

u↓A↑Bl G . s3.10d

In order to show explicitly that the process(3.2) with the
particular choice of interaction(3.3b) admits an entangle-
ment distillation for qubit systemA+B, it turns out to be
enough to consider a much simpler case. Let us treat systems
A and B symmetrically, except for the ordering of their in-
teractions with systemX. We choose the same parameters for
A and B, i.e., gA=gB;g, tA= tB; t, and tA=tB;t (wAsBd
→w and uAsBd→u). For the parity-odd states, the matrixN
now is simplified to be
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N = Se−ivst+2td cossgtdscosw − i sinw cos 2ud − sin2 w sin2 2u

− e−2ivst+td sin2sgtd e−ivst+2td cossgtdscosw − i sinw cos 2ud
D . s3.11d

It is easy to find the condition under which an entangled state
of the form

uCl ;
1
Î2

su↑A↓Bl + eixu↓A↑Bld, s3.12d

wherex is a real parameter, is an eigenstate of this matrixN
(and therefore of the operatorV). A straightforward calcula-
tion shows that if the parametersg, t, and t are so chosen
that the relation

cosw − i sinw cos 2u = − eivt cossgtd s3.13d

is satisfied, the stateuCl with x=vst+td is indeed an eigen-
state ofV belonging to the eigenvaluel0=−e−3ivst+td. [There
is another possibility of optimal distillation of the above en-
tangled state(3.12), but with a differentx, i.e., x=vst+td
+p. This case is realized under the condition(3.13) with the
replacementvt→vt+p; the corresponding eigenvalue is
also given by the shifted one, i.e.,e−3ivst+td.]

Notice that we are not allowed to set cossgtdsinsgtd=0
because it would result in a degenerate(in magnitude) eigen-
value. Observe that we have essentially two conditions
(3.13), while we have three independent combination of pa-
rametersgt, vt, andvt. We, therefore, have the possibility of
an optimal distillation of the entangled stateuCl, if the mag-
nitudes of the other eigenvalues ofV are made smaller than
unity. The remaining eigenvalue ofN under the conditions in
(3.13) reads

e−ivst+tdfe−ivt cossgtdscosw − i sinw cos 2ud + sin2sgtdg

= e−ivst+tdf− cos2sgtd + sin2sgtdg, s3.14d

and its absolute value cannot be made unity when
cossgtdsinsgtdÞ0. On the other hand, matrixM is expressed
as

M = S e−2ivst+td cos2sgtd 7e−ivt sin2sgtd
7e−ivst+2td sin2sgtd cos2sgtd

D s3.15d

and the absolute values of the eigenvalues of this matrix
cannot reach unity if cosvst+tdÞ ±1 and cossgtdsinsgtd
Þ0. This means that, under these conditions ongt, vt, and
vt satisfying the relation(3.13), an optimal purification(i.e.,
distillation) of the entangled state su↑A↓Bl
+eivst+tdu↓A↑Bld /Î2 is possible. It is in fact easily shown that
the left eigenstate ofV belonging to the eigenvaluel0=
−e−3ivst+td is expressed as

kFu =
1
Î2

sk↑A↓Bu + e−ixk↓A↑Bud, kFuCl = 1, s3.16d

and therefore the yieldPstdsNd approaches asymptotically, as
N becomes large, a finite value

Pstds`d =
1

2
fk↑A↓Bu + e−ixk↓A↑BugrABs0dfu↑A↓Bl + eixu↓A↑Blg.

s3.17d

This is nothing but the probability of finding the target en-
tangled stateuCl=su↑A↓Bl+eixu↓A↑Bld /Î2 in the initial state
rABs0d.

IV. ENTANGLEMENT DISTILLATION
OF CAVITY MODES

In the previous section, the possibility of realizing an en-
tanglement distillation is demonstrated for the three-qubit
systemA+B+X. The particular form of interaction(3.3b) is
shown to be suitable for this purpose following the procedure
(3.2). In this section, another application of the purification
mechanism[3,5,6] is explored in a system composed of a
two-level system(e.g., an atom) interacting with two single-
mode cavities. The two cavities may be located at spatially
distant places(or may be near and separated later) and we
aim at extracting an entanglement between the two-cavity
states by repeatedly bringing the two-level atom into inter-
action with them and then selecting a particular state of the
atom by measurements.

The ideas of generating[8] and of transferring[9] en-
tanglement in two-cavity system have already been proposed
and studied in the context of the cavity quantum electrody-
namics(CQED) [10], spectacularly developed over the last
two decades both in the microwave[11] and optical[12]
domains. Entanglement is generated from a properly pre-
pared pure state in the former[8] and an initially prepared
entanglement in one cavity is transformed into another en-
tanglement between the two cavities in the latter[9], via
successive interactions with a two-level atom. The atom
plays the role of a “mediator” or “transformer” of entangle-
ment. A similar, but more complicated role is sought for the
atom in the present scheme, because its interactions with the
cavities and the measurements of its state are expected to
enable us to extract an entangled state, that is to produce an
entanglement distillation,irrespective of the initial states of
the two cavities.

For simplicity, suppose that the two cavitiesA andB are
identical and their interaction with a two-level atomX is well
described by the Jaynes-Cummings Hamiltonian[13]. Let a
andb indicate the annihilation operators of the modes of the
two cavitiesA andB, respectively. The free and interaction
Hamiltonians are

H0 =
v

2
s1 + s3d + va†a + vb†b, s4.1ad
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HXA8 = gAss+a + s−a†d, HXB8 = gBss+b + s−b†d.

s4.1bd

A state where the atomX is in the up(down) state and the
modesa andb are in thenth andmth levels, respectively, is
denoted asu↑ s↓d ,n,ml sn,m=0,1,2, . . .d.

Since our purpose is to extract a pure state not in product
form but entangled, it turns out that simple processes like
(3.2) for the three-qubit system would not work. Indeed, be-
cause of the choice of the Jaynes-Cummings(rotating-wave)
interactions (4.1b), the number operators1+s3d /2+a†a
+b†b commutes with any ofH0, HXA8 , andHXB8 , and therefore
any state of the two-cavity system of the formun,0l, which is
a product state, is easily seen to be an eigenstate of the time
evolution operator constructed analogously to(3.4). (If the
down state ofX is measured, product statesu0,ml are found
to be eigenstates of the relevant time evolution operator.)
Thus a process different from(3.2) would be necessary for
our purpose.

The above consideration would suggest that, with interac-
tion given by(4.1b), it would be better to select after mea-
surement a state ofX different from the initial state. How-
ever, at the same time, we need a procedure that can be
repeated many times within the present framework of the
purification mechanism. Thus we choose a procedure that
can be described schematically as

preparation inu↓l → interaction betweenX andA for tA

→ free evolution fortA

→ interaction betweenX andB for tB

→ free evolution fortB

→ projection tou↑l

→ free evolution fortB

→ interaction betweenX andB for tB

→ free evolution fortA

→ interaction betweenX andA for tA

→ projection tou↓l. s4.2d

See also Fig. 2.
This is clearly a generalization of the purification process,

“projection” → “time evolution” → “projection.” Indeed, in
the above scheme, “time evolution” is not meant in the usual
sense, that is described by a total Hamiltonian. It is instead
interrupted by another projection. However, the condition
under which the purification mechanism does work is essen-
tially the same as in the ordinary cases and all that we have
to do here is to investigate the relevant evolution operator
corresponding to the above process(4.2). It would be impor-
tant to notice that the above choice of the initial and pro-
jected states for systemX is not arbitrary. In fact, if it were
prepared in the up state, a procedure analogous to that de-
scribed before does not work. The vacuum state of the two
cavities, which is a product state, would indeed turn out to be
an eigenstate.

The relevant evolution for the above process(4.2) is rep-
resented by products of the time-evolution and projection
operators and each of them is easily evaluated. The only
nontrivial operators are

e−isH0+HXA8 dtA = e−ivb†btAo
n=0

`

e−isn+1dvtAscoswA
sn+1du↑,nlk↑,nu − i sinwA

sn+1du↑,nlk↓,n + 1u

− i sinwA
sn+1du↓,n + 1lk↑,nu + eivtA coswA

sndu↓,nlk↓,nud s4.3ad

and

e−isH0+HXB8 dtB = e−iva†atBo
m=0

`

e−ism+1dvtBscoswB
sm+1du↑,mlk↑,mu − i sinwB

sm+1du↑,mlk↓,m+ 1u

− i sinwB
sm+1du↓,m+ 1lk↑,mu + eivtB coswB

smdu↓,mlk↓,mud, s4.3bd

where angleswA
snd andwB

smd are defined as

wA
snd ; gAtAÎn, wB

smd ; gBtBÎm. s4.4d

It is an elementary task to evaluate in this case the relevant evolution operatorVc, analogously to(2.5),

FIG. 2. A two-level atomX, prepared inu↓l, is brought to inter-
action with cavity modesa and b in the two cavitiesA and B
successively, and its state is measured after the interactions. Atoms
that are found in stateu↑l will be sent back to the cavities in the
reversed order. The state of atomX is again measured, and if it is
found in u↓l, the whole process is repeated; other events are
discarded.
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Vc ; k↓ ue−isH0+HXA8 dtAe−iH0tAe−isH0+HXB8 dtBe−iH0tBu↑lk↑ ue−iH0tBe−isH0+HXB8 dtBe−iH0tAe−isH0+HXA8 dtAu↓l, s4.5d

and its explicit expression reads

Vc = − o
n,m=0

`

e−2isn+mdvTfssin2 wA
snd cos2 wB

sm+1d + cos2 wA
snd sin2 wB

smddun,mlkn,mu

+ sinwA
sn+1d coswA

snd sinwB
smd coswB

smdun + 1,m− 1lkn,mu

+ sinwA
snd coswA

sn−1d sinwB
sm+1d coswB

sm+1dun − 1,m+ 1lkn,mug, s4.6d

whereT; tA+tA+ tB+tB.
It is manifest from(4.6) that in the product Hilbert space of the two cavities there are sectors ofVc within which the action

of Vc is closed. These invariant sectors are characterized by the numbern+m. We havesn+m+1d stateshun+m,0l , . . . ,u0,n
+mlj for the sn+mdth sector. Notice that the singlet state(vacuum state) u0, 0l sn+m=0d belongs to zero eigenvalue ofVc and
we need not consider it, forVcu0,0l=0. This is closely related to the choice of the initial state ofX and is the reason why we
must prepareX in the down stateu↓l.

Let us turn our attention first to the doublet subspacesn+m=1d. The action ofVc on this subspace is easily read from(4.6)
as

VcSu1,0l
u0,1l D = − e−2ivTS sin2 wA

s1d cos2 wB
s1d sinwA

s1d sinwB
s1d coswB

s1d

sinwA
s1d sinwB

s1d coswB
s1d sin2 wB

s1d DSu1,0l
u0,1l D . s4.7d

Observe that the determinant of this matrix always vanishes,
which means that one of the eigenvalues is zero and the other
is given by the trace of the matrix
−e−2ivTssin2 wA

s1d cos2 wB
s1d+sin2 wB

s1dd. Therefore we have a
possibility of obtaining the largest(in magnitude) eigenvalue
by adjusting the parametergAtA so that

sinwA
s1d ; sinsgAtAd = ± 1. s4.8d

(The possibility coswB
s1d=0 would result, not in an entangle-

ment distillation, but in a product-state purification.) In such
a case, the above eigenvalue equation is simplified to

VcSu1,0l
u0,1l D = S coswB

s1d 7sinwB
s1d

±sin wB
s1d coswB

s1d DS− e−2ivT 0

0 0
D

3S coswB
s1d ±sin wB

s1d

7sinwB
s1d coswB

s1d DSu1,0l
u0,1l D , s4.9d

from which it is clear that the entangled stateuCc
s1dl

=coswB
s1du1,0l±sin wB

s1du0,1l can be extracted with the maxi-
mal probability by this setup. Notice that it still remains the
freedom to adjust the value ofwB

s1d=gBtB.
The remaining task is to check whether there are other

eigenstates ofVc belonging to eigenvalues with unit magni-
tude, under the condition(4.8). Consider the invariant sector
characterized byk=n+m.1 that is composed ofk+1 states
huk,0l , . . . ,u0,klj. The action ofVc on this sector is repre-
sented by the following matrix[see(4.6)]:

Vc1
uk,0l

uk − 1,1l
]

u2,k − 2l
u1,k − 1l

u0,kl
2 = − e−2ikvT1

ck dk . . . 0 0 0

dk ck−1 . . . 0 0 0

] ] � ] ] ]

0 0 . . . c2 d2 0

0 0 . . . d2 c1 d1

0 0 . . . 0 d1 c0

2
31

uk,0l
uk − 1,1l

]

u2,k − 2l
u1,k − 1l

u0,kl
2 , s4.10d

where matrix elementscj ,dj can be read from(4.6) as

cj = sin2wA
s jd cos2 wB

sk−j+1d + cos2 wA
s jdsin2 wB

sk−jd, s4.11d

dj = sinwA
s jd coswA

s j−1d sinwB
sk−j+1d coswB

sk−j+1d. s4.12d

It is important to notice that the condition(4.8) implies that
the elementd2=sinwA

s2d coswA
s1d sinwB

sk−1d coswB
sk−1d vanishes,

irrespective ofwB
sk−1d, and thus the sector further splits into

two subsectorshuk,0l , . . . ,u2,k−2lj and hu1,k−1l , u0,klj.
Furthermore, it is easily seen that the entangled state in the
latter subspace of the formuCc

skdl=coswB
skdu1,k−1l

±sin wB
skdu0,kl has the eigenvalue −e−2ikvT, while, as shown

in the Appendix, no eigenstate in the former subspace
huk,0l , . . . ,u2,k−2lj belongs to a unit(in magnitude) eigen-
value (if k is smaller than 9).
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We have seen that there are, for anyk sector, many en-
tangled states uCc

skdl=coswB
skdu1,k−1l±sin wB

skdu0,kl sk
=1,2. . .d (that increase, in general, in higherk sectors) ex-
tracted with the optimal probabilities by the process(4.2).
Repeated interactions of the two-level atomX in the cavities
A andB and the prescribed measurements(projections) cer-
tainly bring us with a statistical(classical) mixture of these
entangled states. The situation would not be considered com-
pletely satisfactory, since we would not be able to distill a
single entangled state by the process(4.2). There is, how-
ever, a way out of this difficulty. We may prepare such an
initial (mixed) state ofA+B that contains only those sectors
with relatively smallks. Such a preparation of the initial state
would effectively eliminate the possibility of obtaining other
states thanuCc

skdl after performing the process(4.2). For ex-
ample, we may consider the following preparation proce-
dure, which is nothing but a purification process applied to
cavity B. We send a two-level atom prepared in the down
state u↓l to cavity B. After its interaction, which is again
assumed to be of the form(4.1b), with B, the atom is mea-
sured and only those events in which it is found in the state
u↓l are retained. This process is to be repeated many times
and the resulting state ofA+B, which will be used as the
initial state for the following entanglement distillation pro-
cess(4.2), is dominated by the staterABs0d,rAs0d ^ u0lk0u,
since the vacuum state of systemB is the unique eigenstate

of the relevant evolution operator,k↓ue−iHXB8 tu↓ l belonging
to eigenvalue unity if no fine tunings are made on the param-
eters. After having prepared the staterABs0d, we repeat the
process(4.2) under the condition(4.8). We finally end up
with the single entangled stateuCc

s1dl, because our initial state
rABs0d satisfieskFc

skdurABs0duFc
skdl=kCc

skdurABs0duCc
skdl=0 for

k.1, where kFc
skdu is the left eigenstate corresponding to

uCc
skdl.
Concluding this section we wish to give typical values of

relevant parameters under the aspect of the possibility of
implementing our proposal in laboratory. We concentrate on
the estimation of the total durationT of the experiment. To
this end, we choose to be in the context of microwave CQED
where both the geometrical arrangement of the experimental
setup and the intensity of the atom-field coupling regime
seem more favorable to our proposal. Let us first note that
the typical atom-field coupling constantg (gA or gB) can be
chosen in such a way thatg,104–105 s−1 [14]. Moreover,
the lifetime of a Rydberg atom is*10−2 s [15]. As for the
quality factorQ of the cavities currently used in laboratory,
we quote typical values of the order of 108–1010 [14,15]
corresponding to a cavity damping time 1 ms–1 s. Consid-
ering that in our casetA, tB,g−1, the total durationT of the
experiment may be estimated and turns out to be compatible
with the entanglement distillation proposed in this section.

V. SUMMARY

In this paper, the idea of extracting entangled states
among systems located at spatially separated places, irre-
spective of their initial states, has been proposed and applied
to simple systems to show the potentiality of a measurement-

based purification scheme[3]. The establishment of en-
tanglement distillation relies on the successive interactions
between the systems under consideration and the so-called
“mediator” quantum system. In the first example, it is dem-
onstrated that the entanglement between the two qubit states
is possible via their interactions with another qubit, which
plays the role of the entanglement mediator, with the maxi-
mal yield (optimal distillation). In the case of distillation of
cavity-mode entanglement, however, a modification of the
original simple scheme, that is, “interaction→ measurement
→ interaction→¯,” is required and the modified procedure
(4.2) turns out to result in the entangled stateuCc

s1dl, after an
appropriate preparation of the initial state. We stress that
there would also be the possibility of obtaining an entangled
state not only in the lowest sectork=1 but also in the higher
k sector, provided an appropriate initial state be prepared.

It would be worth stressing that in spite of such a modi-
fication required in the second example, the underlying no-
tion is still the same: the action of a measurement(repre-
sented by a projection operator, for simplicity) causes an
essential and critical dynamical change, not only in the sys-
tem measured, but also in the others interacting with the
former. Since the notion is so general, one can devise various
applications of this scheme in many different situations. The
examples explored in this paper are just two of them and
further applications will be reported elsewhere.

Finally, we add some comments on the practical setup of
our proposal. In both schemes reported in the previous sec-
tions, the entanglement mediator is an atom appropriately
prepared before entering into interaction with the two sub-
systems to be entangled and subjected to a conditional mea-
surement of its internal state at the end of the two successive
coupling processes. We wish to stress that to realize in prac-
tice the required “many crosses” scheme one may synchro-
nize the injection of thej th atom of the sequence into the
process with the successful outcome of the internal state
measurement of thes j −1dth one. This kind of experimental
setup might be preferable to the conceptually simpler one
based on the idea of using always the same atom, reversing
its direction of motion at exit to reinject it into the process.
Thus the representations in Figs. 1 and 2, as far as the aspect
under scrutiny is concerned, have been reported only for the
sake of simplicity.
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APPENDIX

In this appendix, a symmetric matrix of the formskù2d

1
ck dk 0 . . . 0 0

dk ck−1 dk−1 . . . 0 0

0 dk−1 ck−2 . . . 0 0

] ] ] � ] ]

0 0 0 . . . c3 d3

0 0 0 . . . d3 c2

2 , sA1d

with the matrix elements[see Eqs.(4.11) and (4.12)]

cj = sin2 wA
s jd cos2 wB

sk−j+1d + cos2 wA
s jd sin2 wB

sk−jd, sA2ad

dj = sinwA
s jd coswA

s j−1d sinwB
sk−j+1d coswB

sk−j+1d, sA2bd

is investigated with particular attention to its eigenstates be-
longing to the eigenvalues with unit magnitudes. Since this
matrix is real and symmetric, its eigenvalues are all real, and
the eigenvalues of relevance in the framework of our proce-
dure here are ±1.

For the first possibility +1, let us consider the determinant
I i skù i ù2d defined by

I i ;*
ci − 1 di 0 . . . 0 0

di ci−1 − 1 di−1 . . . 0 0

0 di−1 ci−2 − 1 . . . 0 0

] ] ] � ] ]

0 0 0 . . . c3 − 1 d3

0 0 0 . . . d3 c2 − 1

* .

sA3d

It is easy to see that the particular form ofI i and the defini-
tions of cj anddj in Eq. (A2) lead to a recursion relation

I i + cos2 wA
sid cos2 wB

sk−idI i−1

= − sin2 wA
sid sin2 wB

sk−i+1dsI i−1 + cos2 wA
si−1d cos2 wB

sk−i+1dI i−2d
sA4d

for kù i ù4. This is further reduced to

I i = − cos2 wA
sid cos2 wB

sk−idI i−1

+ s− 1di−1p
j=1

i−1

sin2 wA
s j+1d sin2 wB

sk−jd sk ù i ù 2d.

sA5d

If we set I i ;s−1di+1Pi, then Pi is found to be positive
semidefinite and to satisfy

Pi = cos2 wA
sid cos2 wB

sk−idPi−1 + p
j=1

i−1

sin2 wA
s j+1d sin2 wB

sk−jd.

sA6d

This relation is easily solved, to yield the explicit form of
Ik=s−1dk+1Pk with

Pk = cos2 wA
s2d

¯ cos2 wA
skd cos2 wB

s1d
¯ cos2wB

sk−2d

+ o
n=2

k−1

sin2 wA
s2d

¯ sin2 wA
snd cos2 wA

sn+1d
¯ cos2 wA

skd

3 cos2 wB
s1d

¯ cos2 wB
sk−n−1d sin2 wB

sk−n+1d
¯ sin2 wB

sk−1d

+ sin2 wA
s2d

¯ sin2 wA
skd sin2 wB

s1d
¯ sin2wB

sk−1d. sA7d

Since each term in Eq.(A7) has the same sign as the
others, vanishing ofIk, which is nothing but the condition for
the matrix(A1) to possess eigenstates that belong to eigen-
value unity, is equivalent to that of each term. This means
that there arek conditions for three parametersgAtA, gBtB,
and k and it seems impossible to have a vanishingIk in
general, unless most of the conditions are simultaneously
satisfied. If we choose a particular value forgAtA, saygAtA
=p /2 as in(4.8), however, allIk with kù9 vanish because
each term in Eq.(A7) contains either sin2 wA

s4d or cos2 wA
s9d,

each of which vanishes.
On the other hand, the matrix(A1) is shown to have no

eigenstate belonging to the eigenvalue −1. Consider the fol-
lowing determinant:

Ji ;*
ci + 1 di 0 . . . 0 0

di ci−1 + 1 di−1 . . . 0 0

0 di−1 ci−2 + 1 . . . 0 0

] ] ] � ] ]

0 0 0 . . . c3 + 1 d3

0 0 0 . . . d3 c2 + 1

* ,

sA8d

wherecj anddj are again given in(A2). Sincecj .0, dj
2,1,

and thereforeJ2=c2+1.0 and J3=sc3+1dsc2+1d−d3
2.0,

let us assume that allJ,’s are positive definite for, up to i
−1. Then it follows that

Ji = sci + 1dJi−1 − di
2Ji−2 . ciJi−1 − di

2Ji−2

= sin2 wA
sid cos2 wB

sk−i+1dsJi−1 − cos2wA
si−1d sin2 wB

sk−i+1dJi−2d

+ cos2 wA
sid sin2 wB

sk−idJi−1. sA9d

This relation recursively yields the inequalities

Ji − cos2 wA
sid sin2 wB

sk−idJi−1

. sin2 wA
sid cos2 wB

sk−i+1dsJi−1 − cos2 wA
si−1d sin2 wB

sk−i+1dJi−2d

. sin2 wA
sid cos2 wB

sk−i+1d
¯ sin2 wA

s4dcos2 wB
sk−3d

3sJ3 − cos2 wA
s3d sin2 wB

sk−3dJ2d. sA10d

The last factor on the right-hand side is shown to be positive
definite,

J3 − cos2 wA
s3d sin2 wB

sk−3dJ2

. ssin2 wA
s3d cos2wB

sk−2d + 1dJ2 − d3
2 . 0, sA11d

which means that the quantity on the left-hand side in(A10)
is positive definite. We conclude thatJi is positive definite
and thereforeJk does not vanish, which completes the proof.
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