402 research outputs found

    Affective factors in Foreign Language Teaching: Enlightenment From Dead Poets Society

    Get PDF
    The focus of foreign language teaching has been changed from the teacher-centered model to the student-centered model. The traditional duck-feeding model of teaching cannot meet the requirements of the new era for it fails to activate students’ affect in learning. Since students’ affective factors exert a great impact on foreign language teaching, how to effectively motivate students becomes our primary focus. This study aims to comprehensively investigate how affective factors may influence foreign language learning by taking American film Dead Poets Society as an example. Besides, it intends to provide some pedagogical implications for educators by analyzing Keating’s teaching mode in Dead Poets Society. In the film, Keating is dedicated to the cultivation of the students’ independent thinking and innovative ability over the teaching process. Through affective interaction with students, Keating finds a suitable way to achieve their self-actualization. According to Maslow’s hierarchy of needs, Krashen’s affective filter hypothesis, and non-intelligence theory, Keating’s teaching mode can effectively help students build up self-confidence and seek their self -actualization. As is generally recognized that affective factors like motivation, self-confidence, anxiety and inhibition play important roles in language learning. Keating’s success can have some enlightenment for foreign language teaching as well. We hold that foreign language teachers should motivate students to seek self-actualization, relieve their anxiety and build up their self-confidence, love and respect them, which can contribute to enhancing of teaching effects ultimately

    Improving the Transferability of Adversarial Examples with Arbitrary Style Transfer

    Full text link
    Deep neural networks are vulnerable to adversarial examples crafted by applying human-imperceptible perturbations on clean inputs. Although many attack methods can achieve high success rates in the white-box setting, they also exhibit weak transferability in the black-box setting. Recently, various methods have been proposed to improve adversarial transferability, in which the input transformation is one of the most effective methods. In this work, we notice that existing input transformation-based works mainly adopt the transformed data in the same domain for augmentation. Inspired by domain generalization, we aim to further improve the transferability using the data augmented from different domains. Specifically, a style transfer network can alter the distribution of low-level visual features in an image while preserving semantic content for humans. Hence, we propose a novel attack method named Style Transfer Method (STM) that utilizes a proposed arbitrary style transfer network to transform the images into different domains. To avoid inconsistent semantic information of stylized images for the classification network, we fine-tune the style transfer network and mix up the generated images added by random noise with the original images to maintain semantic consistency and boost input diversity. Extensive experimental results on the ImageNet-compatible dataset show that our proposed method can significantly improve the adversarial transferability on either normally trained models or adversarially trained models than state-of-the-art input transformation-based attacks. Code is available at: https://github.com/Zhijin-Ge/STM.Comment: 10 pages, 2 figures, accepted by the 31st ACM International Conference on Multimedia (MM '23

    A novel SETD2 variant causing global development delay without overgrowth in a Chinese 3-year-old boy

    Get PDF
    Background: Luscan-Lumish syndrome is characterized by macrocephaly, postnatal overgrowth, intellectual disability (ID), developmental delay (DD), which is caused by heterozygous SETD2 (SET domain containing 2) mutations. The incidence of Luscan-Lumish syndrome is unclear. The study was conducted to provide a novel pathogenic SETD2 variant causing atypical Luscan-Lumish syndrome and review all the published SETD2 mutations and corresponding symptoms, comprehensively understanding the phenotypes and genotypes of SETD2 mutations.Methods: Peripheral blood samples of the proband and his parents were collected for next-generation sequencing including whole-exome sequencing (WES), copy number variation (CNV) detection and mitochondrial DNA sequencing. Identified variant was verified by Sanger sequencing. Conservative analysis and structural analysis were performed to investigate the effect of mutation. Public databases such as PubMed, Clinvar and Human Gene Mutation Database (HGMD) were used to collect all cases with SETD2 mutations.Results: A novel pathogenic SETD2 variant (c.5835_c.5836insAGAA, p. A1946Rfs*2) was identified in a Chinese 3-year-old boy, who had speech and motor delay without overgrowth. Conservative analysis and structural analysis showed that the novel pathogenic variant would loss the conserved domains in the C-terminal region and result in loss of function of SETD2 protein. Frameshift mutations and non-sense mutations account for 68.5% of the total 51 SETD2 point mutations, suggesting that Luscan-Lumish syndrome is likely due to loss of function of SETD2. But we failed to find an association between genotype and phenotype of SETD2 mutations.Conclusion: Our findings expand the genotype-phenotype knowledge of SETD2-associated neurological disorder and provide new evidence for further genetic counselling

    Transcriptome-wide identification and characterization of miRNAs from Pinus densata

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) play key roles in diverse developmental processes, nutrient homeostasis and responses to biotic and abiotic stresses. The biogenesis and regulatory functions of miRNAs have been intensively studied in model angiosperms, such as <it>Arabidopsis thaliana</it>, <it>Oryza sativa </it>and <it>Populus trichocarpa</it>. However, global identification of <it>Pinus densata </it>miRNAs has not been reported in previous research.</p> <p>Results</p> <p>Here, we report the identification of 34 conserved miRNAs belonging to 25 miRNA families from a <it>P. densata </it>mRNA transcriptome database using local BLAST and MIREAP programs. The primary and/or precursor sequences of 29 miRNAs were further confirmed by RT-PCR amplification and subsequent sequencing. The average value of the minimal folding free energy indexes of the 34 miRNA precursors was 0.92. Nineteen (58%) mature miRNAs began with a 5' terminal uridine residue. Analysis of miRNA precursors showed that 19 mature miRNAs were novel members of 14 conserved miRNA families, of which 17 miRNAs were further validated by subcloning and sequencing. Using real-time quantitative RT-PCR, we found that the expression levels of 7 miRNAs were more than 2-fold higher in needles than in stems. In addition, 72 <it>P. densata </it>mRNAs were predicted to be targets of 25 miRNA families. Four target genes, including a nodal modulator 1-like protein gene, two GRAS family transcription factor protein genes and one histone deacetylase gene, were experimentally verified to be the targets of 3 <it>P. densata </it>miRNAs, pde-miR162a, pde-miR171a and pde-miR482a, respectively.</p> <p>Conclusions</p> <p>This study led to the discovery of 34 conserved miRNAs comprising 25 miRNA families from <it>Pinus densata</it>. These results lay a solid foundation for further studying the regulative roles of miRNAs in the development, growth and responses to environmental stresses in <it>P. densata</it>.</p

    FABP4-mediated lipid droplet formation in Streptococcus uberis-infected macrophages supports host defence

    Get PDF
    Foamy macrophages containing prominent cytoplasmic lipid droplets (LDs) are found in a variety of infectious diseases. However, their role in Streptococcus uberis-induced mastitis is unknown. Herein, we report that S. uberis infection enhances the fatty acid synthesis pathway in macrophages, resulting in a sharp increase in LD levels, accompanied by a significantly enhanced inflammatory response. This process is mediated by the involvement of fatty acid binding protein 4 (FABP4), a subtype of the fatty acid-binding protein family that plays critical roles in metabolism and inflammation. In addition, FABP4 siRNA inhibitor cell models showed that the deposition of LDs decreased, and the mRNA expression of Tnf, Il1b and Il6 was significantly downregulated after gene silencing. As a result, the bacterial load in macrophages increased. Taken together, these data demonstrate that macrophage LD formation is a host-driven component of the immune response to S. uberis. FABP4 contributes to promoting inflammation via LDs, which should be considered a new target for drug development to treat infections

    Taurine reprograms mammary-gland metabolism and alleviates inflammation induced by Streptococcus uberis in mice

    Get PDF
    Streptococcus uberis (S. uberis) is an important pathogen causing mastitis, which causes continuous inflammation and dysfunction of mammary glands and leads to enormous economic losses. Most research on infection continues to be microbial metabolism-centric, and many overlook the fact that pathogens require energy from host. Mouse is a common animal model for studying bovine mastitis. In this perspective, we uncover metabolic reprogramming during host immune responses is associated with infection-driven inflammation, particularly when caused by intracellular bacteria. Taurine, a metabolic regulator, has been shown to effectively ameliorate metabolic diseases. We evaluated the role of taurine in the metabolic regulation of S. uberis-induced mastitis. Metabolic profiling indicates that S. uberis exposure triggers inflammation and metabolic dysfunction of mammary glands and mammary epithelial cells (the main functional cells in mammary glands). Challenge with S. uberis upregulates glycolysis and oxidative phosphorylation in MECs. Pretreatment with taurine restores metabolic homeostasis, reverses metabolic dysfunction by decrease of lipid, amino acid and especially energy disturbance in the infectious context, and alleviates excessive inflammatory responses. These outcomes depend on taurine-mediated activation of the AMPK–mTOR pathway, which inhibits the over activation of inflammatory responses and alleviates cellular damage. Thus, metabolic homeostasis is essential for reducing inflammation. Metabolic modulation can be used as a prophylactic strategy against mastitis

    Serum vitamin D deficiency in children and adolescents is associated with type 1 diabetes mellitus

    Get PDF
    Background: To investigate the relationship 25-hydroxy vitamin D (25OHD) level among children and in children with type 1 diabetes mellitus (T1DM). Methods: A case–control study was conducted to compare the serum 25OHD levels between cases and controls. This study recruited 296 T1DM children (106 newly diagnosed T1DM patients and 190 established T1DM patients), and 295 age- and gender-matched healthy subjects as controls. Results: The mean serum 25OHD in T1DM children was 48.69 ± 15.26 nmol/L and in the controls was 57.93 ± 19.03 nmol/L. The mean serum 25OHD in T1DM children was lower than that of controls (P 0.05). Conclusion: Vitamin D deficiency is common in T1DM children, and it should be worthy of attention on the lack of vitamin D in established T1DM children

    Dual Specificity and Novel Structural Folding of Yeast Phosphodiesterase-1 for Hydrolysis of Second Messengers Cyclic Adenosine and Guanosine 3′,5′-Monophosphate

    Get PDF
    Cyclic nucleotide phosphodiesterases (PDEs) decompose second messengers cAMP and cGMP that play critical roles in many physiological processes. PDE1 of Saccharomyces cerevisiae has been subcloned and expressed in Escherichia coli. Recombinant yPDE1 has a KM of 110 μM and a kcat of 16.9 s–1 for cAMP and a KM of 105 μM and a kcat of 11.8 s–1 for cGMP. Thus, the specificity constant (kcat/KMcAMP)/(kcat/KMcGMP) of 1.4 indicates a dual specificity of yPDE1 for hydrolysis of both cAMP and cGMP. The crystal structures of unliganded yPDE1 and its complex with GMP at 1.31 Å resolution reveal a new structural folding that is different from those of human PDEs but is partially similar to that of some other metalloenzymes such as metallo-β-lactamase. In spite of their different structures and divalent metals, yPDE1 and human PDEs may share a common mechanism for hydrolysis of cAMP and cGMP
    • …
    corecore