12 research outputs found

    Observation of simultaneously low CO, NOx and SO2 emission during oxy-coal combustion in a pressurized fluidized bed

    Get PDF
    Pressurized oxy-fuel combustion is a promising technology for CO2 capture with respect to its high combustion efficiency and the simultaneous reduction of gaseous pollutants. A 10 kWth bubbling fluidized bed reactor with continuous coal-feeding was designed, and effects of pressure, temperature and fuel types on pollutant emission were investigated in detail. Generally, the relatively low carbon content in the ash and CO concentration in the flue gas demonstrated that the combustion efficiency was improved by high pressure. The concentration of NO, N2O and SO2 showed decreasing trends with the increase of pressure. Moreover, the effect of pressure on the emission of NO and SO2 in the lower pressure (≀0.3 MPa) was more pronounced than that in the higher pressure. The concentrations of NO and SO2 correlated positively with temperature, while for N2O, it had a negative correlation. Compared with air combustion, NO and SO2 emission dropped sharply in 21%O2/79%CO2 atmosphere. However, N2O concentration during oxy-combustion was slightly higher than that in air combustion in the range of experimental pressure

    Development of novel monoclonal antibodies for blocking NF-ÎșB activation induced by CD2v protein in African swine fever virus

    Get PDF
    BackgroundCD2v, a critical outer envelope glycoprotein of the African swine fever virus (ASFV), plays a central role in the hemadsorption phenomenon during ASFV infection and is recognized as an essential immunoprotective protein. Monoclonal antibodies (mAbs) targeting CD2v have demonstrated promise in both diagnosing and combating African swine fever (ASF). The objective of this study was to develop specific monoclonal antibodies against CD2v.MethodsIn this investigation, Recombinant CD2v was expressed in eukaryotic cells, and murine mAbs were generated through meticulous screening and hybridoma cloning. Various techniques, including indirect enzyme-linked immunosorbent assay (ELISA), western blotting, immunofluorescence assay (IFA), and bio-layer interferometry (BLI), were employed to characterize the mAbs. Epitope mapping was conducted using truncation mutants and epitope peptide mapping.ResultsAn optimal antibody pair for a highly sensitive sandwich ELISA was identified, and the antigenic structures recognized by the mAbs were elucidated. Two linear epitopes highly conserved in ASFV genotype II strains, particularly in Chinese endemic strains, were identified, along with a unique glycosylated epitope. Three mAbs, 2B25, 3G25, and 8G1, effectively blocked CD2v-induced NF-ÎșB activation.ConclusionsThis study provides valuable insights into the antigenic structure of ASFV CD2v. The mAbs obtained in this study hold great potential for use in the development of ASF diagnostic strategies, and the identified epitopes may contribute to vaccine development against ASFV

    Formation and Application of Starch–Polyphenol Complexes: Influencing Factors and Rapid Screening Based on Chemometrics

    No full text
    Understanding the nuanced interplay between plant polyphenols and starch could have significant implications. For example, it could lead to the development of tailor-made starches for specific applications, from bakinag and brewing to pharmaceuticals and bioplastics. In addition, this knowledge could contribute to the formulation of functional foods with lower glycemic indexes or improved nutrient delivery. Variations in the complexes can be attributed to differences in molecular weight, structure, and even the content of the polyphenols. In addition, the unique structural characteristics of starches, such as amylose/amylopectin ratio and crystalline density, also contribute to the observed effects. Processing conditions and methods will always alter the formation of complexes. As the type of starch/polyphenol can have a significant impact on the formation of the complex, the selection of suitable botanical sources of starch/polyphenols has become a focus. Spectroscopy coupled with chemometrics is a convenient and accurate method for rapidly identifying starches/polyphenols and screening for the desired botanical source. Understanding these relationships is crucial for optimizing starch-based systems in various applications, from food technology to pharmaceutical formulations

    Fecal microbiota transplantation results in bacterial strain displacement in patients with inflammatory bowel diseases

    No full text
    Fecal microbiota transplantation (FMT), which is thought to have the potential to correct dysbiosis of gut microbiota, has been used to treat inflammatory bowel disease (IBD) for almost a decade. Here, we report an interventional prospective cohort study performed to elucidate the extent of and processes underlying microbiota engraftment in IBD patients after FMT treatment. The cohort included two categories of patients: (a) patients with moderate to severe Crohn’s disease (CD) (Harvey–Bradshaw Index ≄ 7, n = 11) and (b) patients with ulcerative colitis (UC) (Montreal classification S2 and S3, n = 4). All patients were treated with a single FMT (via mid‐gut, from healthy donors), and follow‐up visits were performed at baseline, 3 days, 1 week, and 1 month after FMT (missing time points included). At each follow‐up time point, fecal samples and clinical metadata were collected. For comparative analysis, 10 fecal samples from 10 healthy donors were included to represent the diversity level of normal gut microbiota. Additionally, the metagenomic data of 25 fecal samples from five individuals with metabolic syndrome who underwent autologous FMT treatment were downloaded from a previous published paper to represent fluctuations in microbiota induced during FMT. All fecal samples underwent shotgun metagenomic sequencing. We found that 3 days after FMT, 11 out of 15 recipients were in remission (three out of four UC recipients; 8 out of 11 CD recipients). Generally, bacterial colonization was observed to be lower in CD recipients than in UC recipients at both species and strain levels. Furthermore, across species, different strains displayed disease‐specific displacement advantages under two‐disease status. Finally, most post‐FMT species (> 80%) could be properly predicted (area under the curve > 85%) using a random forest classification model, with the gut microbiota composition and clinical parameters of pre‐FMT recipients acting as factors that contribute to prediction accuracy

    Fecal microbiota transplantation results in bacterial strain displacement in patients with inflammatory bowel diseases

    Get PDF
    Fecal microbiota transplantation (FMT), which is thought to have the potential to correct dysbiosis of gut microbiota, has been used to treat inflammatory bowel disease (IBD) for almost a decade. Here, we report an interventional prospective cohort study performed to elucidate the extent of and processes underlying microbiota engraftment in IBD patients after FMT treatment. The cohort included two categories of patients: (a) patients with moderate to severe Crohn’s disease (CD) (Harvey–Bradshaw Index ≄ 7, n = 11) and (b) patients with ulcerative colitis (UC) (Montreal classification S2 and S3, n = 4). All patients were treated with a single FMT (via mid‐gut, from healthy donors), and follow‐up visits were performed at baseline, 3 days, 1 week, and 1 month after FMT (missing time points included). At each follow‐up time point, fecal samples and clinical metadata were collected. For comparative analysis, 10 fecal samples from 10 healthy donors were included to represent the diversity level of normal gut microbiota. Additionally, the metagenomic data of 25 fecal samples from five individuals with metabolic syndrome who underwent autologous FMT treatment were downloaded from a previous published paper to represent fluctuations in microbiota induced during FMT. All fecal samples underwent shotgun metagenomic sequencing. We found that 3 days after FMT, 11 out of 15 recipients were in remission (three out of four UC recipients; 8 out of 11 CD recipients). Generally, bacterial colonization was observed to be lower in CD recipients than in UC recipients at both species and strain levels. Furthermore, across species, different strains displayed disease‐specific displacement advantages under two‐disease status. Finally, most post‐FMT species (> 80%) could be properly predicted (area under the curve > 85%) using a random forest classification model, with the gut microbiota composition and clinical parameters of pre‐FMT recipients acting as factors that contribute to prediction accuracy

    Metagenome-genome-wide association studies reveal human genetic impact on the oral microbiome

    No full text
    The oral microbiota contains billions of microbial cells, which could contribute to diseases in many body sites. Challenged by eating, drinking, and dental hygiene on a daily basis, the oral microbiota is regarded as highly dynamic. Here, we report significant human genomic associations with the oral metagenome from more than 1915 individuals, for both the tongue dorsum (n = 2017) and saliva (n = 1915). We identified five genetic loci associated with oral microbiota at study-wide significance (p < 3.16 × 10(−11)). Four of the five associations were well replicated in an independent cohort of 1439 individuals: rs1196764 at APPL2 with Prevotella jejuni, Oribacterium uSGB 3339 and Solobacterium uSGB 315; rs3775944 at the serum uric acid transporter SLC2A9 with Oribacterium uSGB 1215, Oribacterium uSGB 489 and Lachnoanaerobaculum umeaense; rs4911713 near OR11H1 with species F0422 uSGB 392; and rs36186689 at LOC105371703 with Eggerthia. Further analyses confirmed 84% (386/455 for tongue dorsum) and 85% (391/466 for saliva) of host genome-microbiome associations including six genome-wide significant associations mutually validated between the two niches. As many of the oral microbiome-associated genetic variants lie near miRNA genes, we tentatively validated the potential of host miRNAs to modulate the growth of specific oral bacteria. Human genetics accounted for at least 10% of oral microbiome compositions between individuals. Machine learning models showed that polygenetic risk scores dominated over oral microbiome in predicting risk of dental diseases such as dental calculus and gingival bleeding. These findings indicate that human genetic differences are one explanation for a stable or recurrent oral microbiome in each individual

    A consortium of three-bacteria isolated from human feces inhibits formation of atherosclerotic deposits and lowers lipid levels in a mouse model

    No full text
    Summary: By a survey of metagenome-wide association studies (MWAS), we found a robust depletion of Bacteroides cellulosilyticus, Faecalibacterium prausnitzii, and Roseburia intestinalis in individuals with atherosclerotic cardiovascular disease (ACVD). From an established collection of bacteria isolated from healthy Chinese individuals, we selected B. cellulosilyticus, R. intestinalis, and Faecalibacterium longum, a bacterium related to F. prausnitzii, and tested the effects of these bacteria in an Apoe/− atherosclerosis mouse model. We show that administration of these three bacterial species to Apoe−/− mice robustly improves cardiac function, reduces plasma lipid levels, and attenuates the formation of atherosclerotic plaques. Comprehensive analysis of gut microbiota, plasma metabolome, and liver transcriptome revealed that the beneficial effects are associated with a modulation of the gut microbiota linked to a 7α-dehydroxylation–lithocholic acid (LCA)–farnesoid X receptor (FXR) pathway. Our study provides insights into transcriptional and metabolic impact whereby specific bacteria may hold promises for prevention/treatment of ACVD
    corecore