73 research outputs found

    Local blood pressure associates with the degree of luminal stenosis in patients with atherosclerotic disease in the middle cerebral artery.

    Get PDF
    The mechanism underlying atherosclerotic ischemic events within the middle cerebral artery (MCA) is unclear. High structural stress induced by blood pressure might be a potential aetiology as plaque rupture occurs when such mechanical loading exceeds its material strength. To perform reliable analyses quantifying the mechanical loading within a plaque, the local blood pressure is needed. However, data on MCA blood pressure is currently lacking. In this study, the arterial pressure proximal to the stenotic site in the MCA was measured in 15 patients scheduled for intervention. The relationships between these local measurements and pre-intervention and intra-intervention non-invasive arm measurements were assessed. The impact of luminal stenosis on the local blood pressure was quantified. Compared with the pre-intervention arm measurement, the intra-intervention arm pressure decreased significantly by 23.9 ± 11.8 and 9.3 ± 14.7 % at diastole and systole, respectively. The pressure proximal to the stenosis was much lower than the pre-intervention arm measurement (diastole: 65.3 ± 15.7 vs 82.0 ± 9.7, p < 0.01; systole: 81.1 ± 15.9 vs 133.9 ± 18.7, p < 0.01; unit: mmHg). The systolic pressure in the MCA in patients with stenosis <70 % (n = 6) was significantly higher than the value in patients with stenosis ≥70 % (n = 9) (92.0 ± 7.3 vs 73.9 ± 16.1, p = 0.02; unit: mmHg), as was pulse pressure (22.8 ± 6.4 vs 11.1 ± 8.3, p = 0.01; unit: mmHg). However, diastolic pressure remained unaffected (69.2 ± 9.3 vs 62.8 ± 19.0, p = 0.58; unit: mmHg). In conclusion, the obtained results are helpful in understanding the local hemodynamic environment modulated by the presence of atherosclerosis. The local pressure measurements can be used for computational analysis to quantify the critical mechanical condition within an MCA lesion.Emerging Frontier Technology Joint Research Program of Shanghai Municipal Hospital, China (Grant ID: SHDC12013110), National Natural Science Foundation of China (Grant ID: 31470910), National Institute for Health Research Cambridge Biomedical Research CentreThis is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s12938-016-0202-

    Non-coding RNAs: The recently accentuated molecules in the regulation of cell autophagy for ovarian cancer pathogenesis and therapeutic response

    Get PDF
    Autophagy is a self-recycling and conserved process, in which the senescent cytoplasmic components are degraded in cells and then recycled to maintain homeostatic balance. Emerging evidence has suggested the involvement of autophagy in oncogenesis and progression of various cancers, such as ovarian cancer (OC). Meanwhile, the non-coding RNAs (ncRNAs) frequently regulate the mRNA transcription and other functional signaling pathways in cell autophagy, displaying promising roles in human cancer pathogenesis and therapeutic response. This article mainly reviews the cutting-edge research advances about the interactions between ncRNAs and autophagy in OC. This review not only summarizes the underlying mechanisms of dynamic ncRNA-autophagy association in OC, but also discusses their prognostic implications and therapeutic biomarkers. The aim of this review was to provide a more in-depth knowledge framework exploring the ncRNA-autophagy crosstalk and highlight the promising treatment strategies for OC patients

    Mechanical, thermal and tribological properties of polyimide/nano-SiO2 composites synthesized using an in-situ polymerization

    Get PDF
    Polyimide (PI)/nano-SiO2 composites were successfully fabricated via a novel in-situ polymerization. Microstructure, thermal properties, mechanical performance and tribological behaviors of these composites were investigated. The results indicate that nano-SiO2 dispersed homogeneously. Compared with pure PI, thermal stability and heat resistance are higher about 10 °C with the addition of 5 wt% nano-SiO2. Compressive strength and modulus of composite with 5 wt% nano-SiO2 increase by 42.6 and 45.2%, respectively. The coefficient of friction (COF) of composite with 5 wt% nano-SiO2 decrease by 6.8% owing to the thick and uniform transfer films. Excess nano-SiO2 could adversely affect the COF of PI/nano-SiO2 composite. Additionally, wear resistance deteriorates obviously since transfer film exfoliates easily and nano-SiO2 aggregates on the surface of transfer films

    Research advances in erythrocyte regeneration sources and methods in vitro

    No full text
    Erythrocytes (red blood cells, RBCs) facilitate gas exchange in the lungs and transport oxygen to the tissues. The human body must maintain erythrocyte regeneration to support metabolically active cells and tissues. In many hematological diseases, erythrocyte regeneration is impaired. Researchers have studied erythrocyte regeneration for many years both in vivo and in vitro. In this review, we summarize the sources and main culture methods for generating mature and functional red blood cells in vitro. Hematopoietic stem cells (HSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are classic sources for erythrocyte regeneration. In addition, alternative sources such as immortalized adult human erythroid cell lines and transformed fibroblasts have also been generated and have produced functional red blood cells. The culture systems for erythrocytes differ among laboratories. Researchers hope that improvements in culture techniques may contribute to improved RBC outcomes for blood transfusions, drug delivery and the treatment of hematological diseases. Keywords: Erythrocyte, Regeneration, HSCs, Embryonic stem cell, iPSC

    Robust Adaptive Beamforming with Sensor Position Errors Using Weighted Subspace Fitting-Based Covariance Matrix Reconstruction

    No full text
    When sensor position errors exist, the performance of recently proposed interference-plus-noise covariance matrix (INCM)-based adaptive beamformers may be severely degraded. In this paper, we propose a weighted subspace fitting-based INCM reconstruction algorithm to overcome sensor displacement for linear arrays. By estimating the rough signal directions, we construct a novel possible mismatched steering vector (SV) set. We analyze the proximity of the signal subspace from the sample covariance matrix (SCM) and the space spanned by the possible mismatched SV set. After solving an iterative optimization problem, we reconstruct the INCM using the estimated sensor position errors. Then we estimate the SV of the desired signal by solving an optimization problem with the reconstructed INCM. The main advantage of the proposed algorithm is its robustness against SV mismatches dominated by unknown sensor position errors. Numerical examples show that even if the position errors are up to half of the assumed sensor spacing, the output signal-to-interference-plus-noise ratio is only reduced by 4 dB. Beam patterns plotted using experiment data show that the interference suppression capability of the proposed beamformer outperforms other tested beamformers

    Overview of standard and technology development of underground explosion-proof electrical equipment

    No full text
    The paper summarized coal mine underground explosion-proof electrical technique and its development, emphatically introduced the actualities and development trend of coal mine underground explosion-proof electrical standards, analyzed and studied the difference between two domestic and international electrical standards IEC 60079 and GB 3836. At last, the paper pointed out that the intrinsically safe explosion-proof type will be the next major form of coal mine underground explosion-proof electrical equipment

    Robust Covariance Matrix Reconstruction Algorithm for Time-Domain Wideband Adaptive Beamforming

    No full text

    Effects of KN-42 on Growth Performance, Diarrhea and Faecal Bacterial Flora of Weaned Piglets

    No full text
    This research focused on the effects of different doses of Bacillus subtilis KN-42 on the growth performance, diarrhea incidence, faecal bacterial flora, and the relative number of Lactobacillus and Escherichia coli in faeces of weaned piglets to determine whether the strain can serve as a candidate antimicrobial growth promoter. A total of 360 piglets (initial body weight 7.14±0.63 kg) weaned at 26±2 days of age were randomly allotted to 5 treatment groups (4 pens per treatment with 18 pigs per pen) for a 28-day trial. Dietary treatments were basal diet without any antimicrobial (negative control; NC), basal diet supplemented with 120 mg/kg feed of neomycin sulfate (positive control; PC) and basal diet supplemented with 2×109 (L), 4×109 (M) and 20×109 (H) CFU/kg feed of B. subtilis KN-42. During the overall period, average daily gain and feed efficiency of piglets were higher in groups PC, M, and H than those in group NC (p<0.05), and all probiotics and antibiotics groups had a lower diarrhea index than group NC (p<0.05). The 16S rDNA gene-based methods were used to analyze faecal bacterial flora on day 28 of experiment. The result of denaturing gradient gel electrophoresis analysis showed that supplementation of B. subtilis KN-42 to the diet changed the bacterial communities, with a higher bacterial diversity and band number in group M than in the other four groups. Real-time polymerase chain reaction analysis showed that the relative number of Lactobacillus were higher in groups PC and H than in group NC (p<0.05), and the supplemented B. subtilis KN-42 to the diet also reduced the relative number of E. coli (p<0.05). These results suggest that dietary addition of B. subtilis KN-42 can improve the growth performance and gastrointestinal health of piglets
    • …
    corecore