20 research outputs found

    Efficient Sensitivity Analysis for Enhanced Heat Transfer Performance of Heat Sink with Swirl Flow Structure under One-Side Heating

    No full text
    Excellent heat transfer performance has increasingly become a key issue that needs to be solved urgently in the development process of large-scale fusion equipment. The study of heat transfer performance improvement to scientifically and reasonably determine the design parameters of the high heat flow (HHF) components of fusion reactors based on the efficient in-depth analysis of the heat transfer mechanism and its sensitive factors is of great significance. In this paper, a liquid-vapor two-phase flow model with subcooled boiling for a large length-diameter ratio swirl tube structure in the HHF calorimeter component is proposed to analyze the effects of key design parameters (such as inlet temperature of cooling water flow, swirl tube structure parameters, etc.) on its heat transfer performance. Then, considering the high computational cost of the liquid-vapor two-phase flow model, and in order to improve the efficiency of the sensitivity analysis of these design parameters, the polynomial response surface surrogate model of heat transfer performance function was constructed based on Latin hypercube sampling. On this basis, by combining the proposed surrogate model, the sensitivity index of each design parameter could be obtained efficiently using the Sobol global sensitivity analysis method. This method could greatly improve the calculation efficiency of the design parameter sensitivity analysis of HHF components in the fusion reactor, which provides vital guidance for the subsequent rapid design optimization of related components

    Optimization Analysis of the Structural Design of NNBI Cryosorption Pumps

    No full text
    Cryosorption pumps create a vacuum by adsorbing gas at low temperature through porous solid adsorbents. The transmission probability of gas molecules and heat loads of cryosorption pumps are important factors affecting its performance. Herein, Molflow software based on the Monte Carlo principle is used to analyze the effects of the structural design of cryosorption pumps on transmission probability. The influence of structural design on radiation heat transfer is analyzed by ANSYS Steady-State Thermal software. This provides a reference for the design of a cryosorption pump to validate the prototype of a neutral beam injector for the China Engineering Fusion Experimental Reactor (CFETR)

    Water supply simulation for improved allocation and management

    No full text
    In Pereira, L. S.; Cai, L. G.; Musy, A.; Minhas, P. S. (Eds.), Water savings in the Yellow River Basin: Issues and decision support tools in irrigation. Beijing, China: China Agriculture Pres

    Improved Design and Thermo-Mechanical Verification of Deflection Magnet Beam Collimator of EAST-NBI System

    No full text
    The deflection magnet (DM) is the most important component of the Neutral Beam Injection (NBI) system of Experimental Advanced Superconducting Tokamak (EAST), which can magnetically deflect the un-neutralized charged particles after the neutralized process of the beam is extracted from the ion source, and then form a neutral beam injected into the tokamak. Under the operating conditions of the NBI system, by using the thermocouple monitoring system in the experiment, it can be found that the currently operating DM beam collimator has a quite high temperature rise. It is necessary to redesign the DM beam collimator to improve its heat transfer performance. The parallel arrangement of multiple rows of tubes is proposed as the basic method for the redesign of the beam collimator of DM, the thermal-fluid-structure analysis model of this redesign model is established and its temperature field, pressure field and stress field are analyzed. Taking the surface temperature of the beam collimator, the overall dimension after the total tube combination and the pressure drop of the whole structure of collimator as the optimization objectives, and setting the fluid velocity, the tube’s inner diameter and the number of tube rows as the design variables, the optimized design scheme of the beam collimator structure is obtained. From the results of simulation, the new structure can better meet the operation requirements of DM, and its maximum temperature rise is well controlled, which is expected to meet the long pulse operation requirements of the NBI system. The proposed simulation and design optimization method can provide a certain reference for the design and optimization of other high-heat-flux structures in complex large-scale neutral beam systems in the future

    Improved Design and Thermo-Mechanical Verification of Deflection Magnet Beam Collimator of EAST-NBI System

    No full text
    The deflection magnet (DM) is the most important component of the Neutral Beam Injection (NBI) system of Experimental Advanced Superconducting Tokamak (EAST), which can magnetically deflect the un-neutralized charged particles after the neutralized process of the beam is extracted from the ion source, and then form a neutral beam injected into the tokamak. Under the operating conditions of the NBI system, by using the thermocouple monitoring system in the experiment, it can be found that the currently operating DM beam collimator has a quite high temperature rise. It is necessary to redesign the DM beam collimator to improve its heat transfer performance. The parallel arrangement of multiple rows of tubes is proposed as the basic method for the redesign of the beam collimator of DM, the thermal-fluid-structure analysis model of this redesign model is established and its temperature field, pressure field and stress field are analyzed. Taking the surface temperature of the beam collimator, the overall dimension after the total tube combination and the pressure drop of the whole structure of collimator as the optimization objectives, and setting the fluid velocity, the tube’s inner diameter and the number of tube rows as the design variables, the optimized design scheme of the beam collimator structure is obtained. From the results of simulation, the new structure can better meet the operation requirements of DM, and its maximum temperature rise is well controlled, which is expected to meet the long pulse operation requirements of the NBI system. The proposed simulation and design optimization method can provide a certain reference for the design and optimization of other high-heat-flux structures in complex large-scale neutral beam systems in the future

    Vacuum System Optimization for EAST Neutral Beam Injector

    No full text
    The neutral beam injector (NBI) generates a high-energy ion beam and neutralizes it, and then relies on drift transmission to inject the formed neutral beam into the fusion plasma to increase the plasma temperature and drive the plasma current. In order to better cooperate with the Experimental Advanced Superconductive Tokamak (EAST), part of the Chinese major national scientific and technological infrastructure, in carrying out long-pulse high-parameter physics experiments of 400 s and above, this paper considers the optimization of the current design and operation of the NBI beam line with a pulse width of 100 s. Based on an upgraded and optimized NBI vacuum chamber and the structure of the beam-line components, the gas-source characteristics under the layout design of the NBI system are analyzed and an NBI vacuum system that meets relevant needs is designed. Using Molflow software to simulate the transport process of gas molecules in the vacuum chamber, the pressure gradient in the vacuum chamber and the heat-load distribution of the low-temperature condensation surface are obtained. The results show that when the NBI system is dynamically balanced, the pressure of each vacuum chamber section is lower than the set value, thus meeting the performance requirements for the NBI vacuum system and providing a basis for subsequent implementation of the NBI vacuum system upgrade using engineering

    Integrating Ecological Restoration of Agricultural Non-Point Source Pollution in Poyang Lake Basin in China

    No full text
    This study addresses the excessive consumption of river basin water from the Poyang Lake area in China. Consumption of water for irrigation, together with the discharge of agricultural non-point source pollution, is seriously affecting the water quality of Poyang Lake. This study assesses the application of integrated ecological restoration technology for agricultural non-point source pollution in the Ganfu Plain Area, which is an important agricultural production base in the Poyang Lake basin. The results indicated that the water-fertilizer comprehensive regulation mode for double-cropping rice provided water savings of 10.4% and increased rice yield by 6.5% per hectare. Furthermore, it reduced drainage water pollution by 20.4%, and emissions of ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3−-N), total phosphorus (TP), and total nitrogen (TN) from rice paddy surfaces by 18.6%, 11.1%, 15.4%, and 16.0%, respectively. The eco-channel–pond wetland system effectively reduced TN and TP pollutant levels in rice paddy drainage water; the eco-channel reduced TN and TP by 9.3% and 14.0%, respectively; and the pond wetland system showed reductions of 8.6% and 22.9%, respectively. The “three lines of defense” purification technology, including rice field source control, eco-channel interception, and pond wetland purification, removed 29.9% of TN and 44.3% of TP

    Vacuum System Optimization for EAST Neutral Beam Injector

    No full text
    The neutral beam injector (NBI) generates a high-energy ion beam and neutralizes it, and then relies on drift transmission to inject the formed neutral beam into the fusion plasma to increase the plasma temperature and drive the plasma current. In order to better cooperate with the Experimental Advanced Superconductive Tokamak (EAST), part of the Chinese major national scientific and technological infrastructure, in carrying out long-pulse high-parameter physics experiments of 400 s and above, this paper considers the optimization of the current design and operation of the NBI beam line with a pulse width of 100 s. Based on an upgraded and optimized NBI vacuum chamber and the structure of the beam-line components, the gas-source characteristics under the layout design of the NBI system are analyzed and an NBI vacuum system that meets relevant needs is designed. Using Molflow software to simulate the transport process of gas molecules in the vacuum chamber, the pressure gradient in the vacuum chamber and the heat-load distribution of the low-temperature condensation surface are obtained. The results show that when the NBI system is dynamically balanced, the pressure of each vacuum chamber section is lower than the set value, thus meeting the performance requirements for the NBI vacuum system and providing a basis for subsequent implementation of the NBI vacuum system upgrade using engineering
    corecore