18 research outputs found

    Molecular mechanisms regulating epithelial-to-mesenchymal transition and therapy sensitivity in breast cancer and glioblastoma

    Get PDF
    This thesis is aimed at identifying novel therapeutic targets for breast cancer and aggressive brain tumors in preclinical models. Metastatic disease is the main cause of cancer-related deaths, including breast cancer. Poor prognosis is related to limited therapeutic effect as a result of treatment resistance to current therapies, such as chemotherapy, radiotherapy and hormone-based therapies. Novel treatments that prevent resistance or metastasis are highly needed. The cellular process of epithelial-to-mesenchymal transition (EMT) known to stimulate the afore mentioned malignant properties may provide novel targets for therapy. We found the Notch3 signaling pathway to play an important role in maintaining an epithelial phenotype in breast cancer and suppress tumorigenesis and metastases. Underlying molecular mechanisms were identified that proves additional possible targets for therapy. Furthermore, the tumor promoting properties of the cell membrane localized cell adhesion protein CD146 was investigated in both breast cancer and brain tumor cell culture models. In breast cancer, CD146 appeared to induce EMT and enhance chemotherapy (cisplatin) and hormone therapy (tamoxifen) resistance sensitivity. In glioblastoma, the most aggressive and lethal brain tumor in adults, CD146 promoted malignant behavior of tumor cells, including cancer stem cell properties, invasive potential and radiotherapy resistance, in glioblastoma spheroid models. These findings indicate that CD146 could be a promising target in both breast cancer and glioblastoma. In summary, the development of targeted therapy against these identified EMT mechanisms and related malignant tumor properties may contribute to a better prognosis for these cancer patients

    The Unfolded Protein Response Sensor PERK Mediates Stiffness-Dependent Adaptation in Glioblastoma Cells

    Get PDF
    Glioblastoma multiforme (GBM) is the most aggressive brain tumor in adults. In addition to genetic causes, the tumor microenvironment (TME), including stiffening of the extracellular matrix (ECM), is a main driver of GBM progression. Mechano-transduction and the unfolded protein response (UPR) are essential for tumor-cell adaptation to harsh TME conditions. Here, we studied the effect of a variable stiff ECM on the morphology and malignant properties of GBM stem cells (GSCs) and, moreover, examined the possible involvement of the UPR sensor PERK herein. For this, stiffness-tunable human blood plasma (HBP)/alginate hydrogels were generated to mimic ECM stiffening. GSCs showed stiffness-dependent adaptation characterized by elongated morphology, increased proliferation, and motility which was accompanied by F-Actin cytoskeletal remodeling. Interestingly, in PERK-deficient GSCs, stiffness adaptation was severely impaired, which was evidenced by low F-Actin levels, the absence of F-Actin remodeling, and decreased cell proliferation and migration. This impairment could be linked with Filamin-A (FLN-A) expression, a known interactor of PERK, which was strongly reduced in PERK-deficient GSCs. In conclusion, we identified a novel PERK/FLNA/F-Actin mechano-adaptive mechanism and found a new function for PERK in the cellular adaptation to ECM stiffening

    ER stress and UPR activation in glioblastoma:identification of a noncanonical PERK mechanism regulating GBM stem cells through SOX2 modulation

    Get PDF
    Patients with aggressive brain tumors, named glioblastoma multiforme (GBM), have a poor prognoses. Here we explored if the ER stress/unfolded protein response (UPR) is involved in the pathophysiology of GBM and may provide novel therapeutic targets. Immunohistochemical analyses of a tissue microarray containing primary GBM specimens showed strong variability in expression of the UPR markers GRP78/BiP, XBP1, and ATF4. Interestingly, high ATF4 expression was associated with poor overall survival suggesting involvement of PERK signaling in GBM progression. In vitro experiments using patient-derived neurospheres, enriched for GBM stem cells (GSCs), showed high sensitivity for the ER stressor thapsigargin (Tg) mainly via PERK signaling. In contrast, neurospheres-derived differentiated GBM cells were less sensitive likely due to lower UPR activity as indicated by comparative transcriptional profiling. Tg and Tunicamycin strongly reduced neurosphere forming ability of GSCs that was linked with potent PERK-dependent downregulation of SOX2 protein. Interestingly, SOX2 downregulation occurred directly via PERK, not requiring downstream activation of the PERK-UPR pathway. Moreover, PERK inactivation resulted in aberrant serum-induced differentiation of GBM neurospheres accompanied by persistent SOX2 expression, delayed upregulation of GFAP and reduced cell adherence. In conclusion, we provide evidence that PERK signaling contributes to the prognoses of primary GBM patients and identified PERK as a novel regulator of SOX2 expression and GSC differentiation. The role of PERK appeared to be pleiotropic involving UPR-dependent, as well as novel identified noncanonical mechanisms regulating SOX2. ER stress and PERK modulation appear to provide promising therapeutic targets for therapy in GBM

    Prevalence and factors of COVID-19 vaccine refusal among solid cancer patients in China: an application of the health belief model

    Get PDF
    IntroductionIt is essential to protect cancer patients from contracting COVID-19 through vaccination. A majority of cancer patients are recommended by international health authorities to take up the vaccines. COVID-19 vaccine refusal among cancer patients during the pandemic period is under-researched. This study investigated factors of vaccine refusal based on the Health Belief Model (HBM).MethodsA cross-sectional study was conducted among female breast cancer patients, male/female thyroid cancer patients, and gynecological cancer patients in Shantou, China from April to August 2022 (n = 1,115). Multinomial logistic regression analysis adjusted for socio-demographics was conducted to test factors of COVID-19. Adjusted odds ratios of the two models comparing vaccine refusal vs. “vaccine non-refusal” and vaccine refusal vs. ever-vaccination were derived and presented.ResultsOf all the participants, the prevalence of vaccine refusal, “vaccine non-refusal,” and ever-vaccination was 25.9, 22.2, and 51.8%, respectively. In both multinomial logistic regression models, significant factors of vaccine refusal included socio-demographics (age, education level, employment status, monthly household income, cancer type, duration since cancer diagnosis, current treatment status) and some vaccine-related HBM (perceived benefits, perceived barriers, cue to action, and self-efficacy). Perceived severity of COVID-19 was significant only in the vaccine refusal vs. ever-vaccination model. In neither model, perceived susceptibility to contract COVID-19 was statistically significant.ConclusionAbout ¼ of the participants expressed vaccine refusal. Interventions are warranted. Future longitudinal studies are needed to verify this study’s findings. Pilot interventions should also be launched to test effectiveness of interventions modifying the significant HBM factors found in this study

    Evolution of wound-activated regeneration pathways in the plant kingdom

    No full text
    Regeneration serves as a self-protective mechanism that allows a tissue or organ to recover its entire form and function after suffering damage. However, the regenerative capacity varies greatly within the plant kingdom. Primitive plants frequently display an amazing regenerative ability as they have developed a complex system and strategy for long-term survival under extreme stress conditions. The regenerative ability of dicot species is highly variable, but that of monocots often exhibits extreme recalcitrance to tissue replenishment. Recent studies have revealed key factors and signals that affect cell fate during plant regeneration, some of which are conserved among the plant lineage. Among these, several members of the ETHYLENE RESPONSE FACTOR (ERF) transcription factors have been implicated in wound signaling, playing crucial roles in the regenerative mechanisms after different types of wounding. An understanding of plant regeneration may ultimately lead to an increased regenerative potential of recalcitrant species, producing more high-yielding, multi-resistant and environmentally friendly crops and ensuring the long-term development of global agriculture

    The wound-activated ERF15 transcription factor drives <i>Marchantia polymorpha</i> regeneration by activating an oxylipin biosynthesis feedback loop

    No full text
    The regenerative potential in response to wounding varies widely among species. Within the plant lineage, the liverwort Marchantia polymorpha displays an extraordinary regeneration capacity. However, its molecular pathways controlling the initial regeneration response are unknown. Here, we demonstrate that the Mp ERF15 transcription factor gene is instantly activated after wounding and is essential for gemmaling regeneration following tissue incision. MpERF15 operates both upstream and downstream of the MpCOI1 oxylipin receptor by controlling the expression of oxylipin biosynthesis genes. The resulting rise in the oxylipin dinor-12-oxo-phytodienoic acid (dn-OPDA) levels results in an increase in gemma cell number and apical notch organogenesis, generating highly disorganized and compact thalli. Our data pinpoint Mp ERF15 as a key factor activating an oxylipin biosynthesis amplification loop after wounding, which eventually results in reactivation of cell division and regeneration. We suggest that the genetic networks controlling oxylipin biosynthesis in response to wounding might have been reshuffled over evolution. </jats:p
    corecore