53 research outputs found

    Comparative transcriptome profiling reveals the importance of GmSWEET15 in soybean susceptibility to Sclerotinia sclerotiorum

    Get PDF
    Soybean sclerotinia stem rot (SSR) is a disease caused by Sclerotinia sclerotiorum that causes incalculable losses in soybean yield each year. Considering the lack of effective resistance resources and the elusive resistance mechanisms, we are urged to develop resistance genes and explore their molecular mechanisms. Here, we found that loss of GmSWEET15 enhanced the resistance to S. sclerotiorum, and we explored the molecular mechanisms by which gmsweet15 mutant exhibit enhanced resistance to S. sclerotiorum by comparing transcriptome. At the early stage of inoculation, the wild type (WT) showed moderate defense response, whereas gmsweet15 mutant exhibited more extensive and intense transcription reprogramming. The gmsweet15 mutant enriched more biological processes, including the secretory pathway and tetrapyrrole metabolism, and it showed stronger changes in defense response, protein ubiquitination, MAPK signaling pathway-plant, plant-pathogen interaction, phenylpropanoid biosynthesis, and photosynthesis. The more intense and abundant transcriptional reprogramming of gmsweet15 mutant may explain how it effectively delayed colonization by S. sclerotiorum. In addition, we identified common and specific differentially expressed genes between WT and gmsweet15 mutant after inoculation with S. sclerotiorum, and gene sets and genes related to gmsweet15_24 h were identified through Gene Set Enrichment Analysis. Moreover, we constructed the protein–protein interaction network and gene co-expression networks and identified several groups of regulatory networks of gmsweet15 mutant in response to S. sclerotiorum, which will be helpful for the discovery of candidate functional genes. Taken together, our results elucidate molecular mechanisms of delayed colonization by S. sclerotiorum after loss of GmSWEET15 in soybean, and we propose novel resources for improving resistance to SSR

    Investigation of the Impacts of Antibiotic Exposure on the Diversity of the Gut Microbiota in Chicks

    No full text
    The dynamic microbiota in chickens can be affected by exposure to antibiotics, which may alter the composition and substrate availability of functional pathways. Here, 120 Jing Hong chicks at 30 days of age were randomly divided into four treatments totaling seven experimental groups: control chicks not exposed to antibiotics; and chicks exposed to enrofloxacin, diclazuril, and their mixture at 1:1 for 14 days and then not exposed for a withdrawal period of 15 days. Fecal samples were collected from the 7 groups at 8 time-points (exposure to 4 antibiotics and 4 withdrawal periods) to perform in-depth 16S rRNA sequencing of the gut microbiota. Taxon-independent analysis showed that the groups had significantly distinct microbial compositions (p < 0.01). Based on the microbial composition, as compared with the control group, the abundances of the phyla Firmicutes, Actinobacteria, Thermi, and Verrucomicrobia, as well as the families Lactobacillus, Lactococcus, S24-7, and Corynebacterium, were decreased in the antibiotic-exposed chicks (p < 0.01). Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analyses revealed significant differences in microbiota metabolite pathways due to the genera of the antibiotic-responsive microbes (p < 0.01), especially the pathways relating to cell growth and death, immune system diseases, carbohydrate metabolism, and nucleotide metabolism. Oral treatment with enrofloxacin, diclazuril, and their mixture modified the gut microbiota composition and the microbial metabolic profiles in chickens, with persistent effects (during the withdrawal period) that prevented the return to the original community and led to the formation of a new community

    Mequindox Induced Genotoxicity and Carcinogenicity in Mice

    No full text
    Mequindox (MEQ), acting as an inhibitor of deoxyribonucleic acid (DNA) synthesis, is a synthetic heterocyclic N-oxides. To investigate the potential carcinogenicity of MEQ, four groups of Kun-Ming (KM) mice (50 mice/sex/group) were fed with diets containing MEQ (0, 25, 55, and 110 mg/kg) for one and a half years. The result showed adverse effects on body weights, feed consumption, hematology, serum chemistry, organ weights, relative organ weights, and incidence of tumors during most of the study period. Treatment-related changes in hematology, serum chemistry, relative weights and histopathological examinations revealed that the hematological system, liver, kidneys, and adrenal glands, as well as the developmental and reproductive system, were the main targets after MEQ administration. Additionally, MEQ significantly increased the frequency of micronucleated normochromatic erythrocytes in bone marrow cells of mice. Furthermore, MEQ increased the incidence of tumors, including mammary fibroadenoma, breast cancer, corticosuprarenaloma, haemangiomas, hepatocarcinoma, and pulmonary adenoma. Interestingly, the higher incidence of tumors was noted in M25 mg/kg group, the lowest dietary concentration tested, which was equivalent to approximately 2.25 and 1.72 mg/kg b.w./day in females and males, respectively. It was assumed that the lower toxicity might be a reason for its higher tumor incidence in M25 mg/kg group. This finding suggests a potential relationships among the dose, general toxicity and carcinogenicity in vivo, and further study is required to reveal this relationship. In conclusion, the present study demonstrates that MEQ is a genotoxic carcinogen in KM mice

    Construction of Electrochemical Immunosensor Based on Gold-Nanoparticles/Carbon Nanotubes/Chitosan for Sensitive Determination of T-2 Toxin in Feed and Swine Meat

    No full text
    T-2 toxin (T-2) is one of major concern mycotoxins acknowledged as an unavoidable contaminant in human foods, animal feeds and also agriculture products. Thus, a facile and sensitive method is essential for accurate T-2 toxin detection. In our work, a specific electrochemical immunosensor based on gold nanoparticles/carboxylic group-functionalized single-walled carbon nanotubes/chitosan (AuNPs/cSWNTs/CS) composite was established. The mechanism of the electrochemical immunosensor was an indirect competitive binding to a given amount of anti-T-2 between free T-2 and T-2-bovine serum albumin, which was conjugated on covalently functionalized cSWNTs decorated on the glass carbon electrode. Afterwards, the alkaline phosphatase labeled anti-mouse secondary antibody was bound to the electrode surface by reacting with the primary antibody. Lastly, alkaline phosphatase catalyzed the hydrolysis of the substrate α-naphthyl phosphate, which produced an electrochemical signal. Compared with conventional methods, the established immunosensor was more sensitive and simpler. Under optimal conditions, this method could quantitatively detect T-2 from 0.01 to 100 μg·L−1 with a detection limit of 0.13 μg·L−1 and favorable recovery 91.42⁻102.49%. Moreover, the immunosensor was successfully applied to assay T-2 in feed and swine meat, which showed good correlation with the results obtained from liquid chromatography-tandem mass spectrometry (LC-MS/MS)

    Simultaneous determination of aditoprim and its three major metabolites in pigs, broilers and carp tissues, and its application in tissue distribution and depletion studies

    No full text
    <p>Aditoprim (ADP) is a recently developed dihydrofolate reductase inhibitor that has shown promise for therapeutic use in veterinary medicine because of its excellent pharmacokinetic properties. In this study, a sensitive and reliable multi-residue chromatography-ultraviolet (HPLC-UV) method for the quantitative analysis of ADP and its three major metabolites was developed, and the tissue distribution and depletion profiles of ADP and its major metabolites in pigs, broilers and carp were investigated. Edible and additional tissues (heart, lung, stomach, intestine and swim bladder) were collected for analysis at six different withdrawal periods after ADP administration for 7 days. ADP, N-monomethyl-ADP and N-didesmethyl-ADP were detected in almost all tissues in the three species. The liver, kidney and lung showed higher residue concentrations, and the liver showed a longer residue half-life (<i>t</i><sub>1/2</sub>) than other tissues. In the liver, ADP was the most abundant component with the longest persistence. The results suggest that the liver was the residual target tissue and ADP was the marker residue, and the conclusive withdrawal time (WDT) of 20 days in pigs, 16 days in broilers and 25 days in carp was estimated using the assessment methodologies approved by the Joint FAO/WHO Expert Committee on Food Additives (JECFA).</p

    A Convenient and Sensitive LC-MS/MS Method for Simultaneous Determination of Carbadox- and Olaquindox-Related Residues in Swine Muscle and Liver Tissues

    No full text
    This paper presents a convenient and sensitive LC-MS/MS method for the simultaneous determination of carbadox and olaquindox residues, including desoxyolaquindox (DOLQ), desoxycarbadox (DCBX), quinoxaline-2-carboxylic acid (QCA), 3-methyl-quinoxaline-2-carboxylic acid (MQCA), and the glycine conjugates of QCA and MQCA (namely, QCA-glycine and MQCA-glycine, resp.) in swine muscle and liver tissues. Tissue samples were extracted with 2% metaphosphoric acid in 20% methanol and cleaned up by solid-phase extraction (SPE) on a mixed-mode anion-exchange column (Oasis MAX). Analysis was performed on a C18 column by detection with mass spectrometry in the multiple reaction monitoring (MRM) mode. The limits of detection (LODs) of the six analytes were determined to be 0.01 Όg·kg−1 to 0.25 Όg·kg−1, and the limits of quantification (LOQs) were 0.02 Όg·kg−1 to 0.5 Όg·kg−1. The total recoveries of the six analytes in all tissues were higher than 79.1% with the RSD% less than 9.2%. The developed method can determine the real residue level of QCA and MQCA, whether they are present in free form or as glycine conjugates in tissues, together with the carcinogenic desoxy metabolites DCBX and DOLQ with high recovery. Therefore, this method was suitable for routine analysis of residue control programmes and the residue depletion study of CBX and OLQ on swine
    • 

    corecore