43 research outputs found

    An H{\alpha} Impression of Ly{\alpha} Galaxies at z6z\simeq6 with Deep JWST/NIRCam Imaging

    Full text link
    We present a study of seven spectroscopically confirmed Ly{\alpha} emitting galaxies at redshift z6z\simeq6 using the James Webb Space Telescope (JWST) NIRCam images. These galaxies, with a wide range of Ly{\alpha} luminosities, were recently observed in a series of NIRCam broad- and medium-bands. We measure the continuum and H{\alpha} line properties of the galaxies using the combination of the NIRCam photometry and archival Hubble Space Telescope imaging data. We find that galaxies with bluer UV continuum slopes likely have higher escape fractions of Ly{\alpha} photons. We also find that galaxies with higher Ly{\alpha} line emission tend to produce ionizing photons more efficiently. The most Ly{\alpha}-luminous galaxy in the sample has a high ionizing photon production efficiency of log10ξion,0_{10} \xi_{\rm ion, 0} (Hz erg1^{-1}) > 26. Our results support that Ly{\alpha} galaxies may have served as an important contributor to the cosmic reionization. Blue and bright Ly{\alpha} galaxies are also excellent targets for JWST follow-up spectroscopic observations.Comment: 10 pages, 4 figures, 2 tables, submitted to ApJ

    The Magellan M2FS Spectroscopic Survey of High-Redshift Galaxies: A Sample of 260 Lyα\alpha Emitters at Redshift z5.7z\approx5.7

    Full text link
    We present a spectroscopic survey of Lyα\alpha emitters (LAEs) at z5.7z\approx5.7 using the multi-object spectrograph M2FS on the Magellan Clay telescope. This is part of a high-redshift galaxy survey carried out in several well-studied deep fields. These fields have deep images in multiple UV/optical bands, including a narrow NB816 band that has allowed an efficient selection of LAE candidates at z5.7z\approx5.7. Our sample consists of 260 LAEs and covers a total effective area of more than two square degrees on the sky. This is so far the largest (spectroscopically confirmed) sample of LAEs at this redshift. We use the secure redshifts and narrowband photometry to measure Lyα\alpha luminosities. We find that these LAEs span a Lyα\alpha luminosity range of 2×10425×1043\sim 2\times10^{42} - 5\times10^{43} erg s1^{-1}, and include some of the most luminous galaxies known at z5.7z \ge 5.7 in terms of Lyα\alpha luminosity. Most of them have rest-frame equivalent widths between 20 and 300 \r{A}, and more luminous Lyα\alpha emission lines tend to have broader line widths. We detect a clear offset of 20\sim20 \r{A} between the observed Lyα\alpha wavelength distribution and the NB816 filter transmission curve, which can be explained by the intergalactic medium absorption of continua blueward of Lyα\alpha in the high-redshift spectra. This sample is being used to study the Lyα\alpha luminosity function and galaxy properties at z5.7z\approx5.7.Comment: 16 pages, 12 figures, 3 tables; Accepted for publication in Ap

    Informative scene decomposition for crowd analysis, comparison and simulation guidance

    Get PDF
    Crowd simulation is a central topic in several fields including graphics. To achieve high-fidelity simulations, data has been increasingly relied upon for analysis and simulation guidance. However, the information in real-world data is often noisy, mixed and unstructured, making it difficult for effective analysis, therefore has not been fully utilized. With the fast-growing volume of crowd data, such a bottleneck needs to be addressed. In this paper, we propose a new framework which comprehensively tackles this problem. It centers at an unsupervised method for analysis. The method takes as input raw and noisy data with highly mixed multi-dimensional (space, time and dynamics) information, and automatically structure it by learning the correlations among these dimensions. The dimensions together with their correlations fully describe the scene semantics which consists of recurring activity patterns in a scene, manifested as space flows with temporal and dynamics profiles. The effectiveness and robustness of the analysis have been tested on datasets with great variations in volume, duration, environment and crowd dynamics. Based on the analysis, new methods for data visualization, simulation evaluation and simulation guidance are also proposed. Together, our framework establishes a highly automated pipeline from raw data to crowd analysis, comparison and simulation guidance. Extensive experiments and evaluations have been conducted to show the flexibility, versatility and intuitiveness of our framework

    Breath-, air- and surface-borne SARS-CoV-2 in hospitals

    Get PDF
    The COVID-19 pandemic has brought an unprecedented crisis to the global health sector. When discharging COVID-19 patients in accordance with throat or nasal swab protocols using RT-PCR, the potential risk of reintroducing the infection source to humans and the environment must be resolved. Here, 14 patients including 10 COVID-19 subjects were recruited; exhaled breath condensate (EBC), air samples and surface swabs were collected and analyzed for SARS-CoV-2 using reverse transcription-polymerase chain reaction (RT-PCR) in four hospitals with applied natural ventilation and disinfection practices in Wuhan. Here we discovered that 22.2% of COVID-19 patients (n = 9), who were ready for hospital discharge based on current guidelines, had SARS-CoV-2 in their exhaled breath (~10⁵ RNA copies/m³). Although fewer surface swabs (3.1%, n = 318) tested positive, medical equipment such as face shield frequently contacted/used by healthcare workers and the work shift floor were contaminated by SARS-CoV-2 (3–8 viruses/cm²). Three of the air samples (n = 44) including those collected using a robot-assisted sampler were detected positive by a digital PCR with a concentration level of 9–219 viruses/m³. RT-PCR diagnosis using throat swab specimens had a failure rate of more than 22% in safely discharging COVID-19 patients who were otherwise still exhaling the SARS-CoV-2 by a rate of estimated ~1400 RNA copies per minute into the air. Direct surface contact might not represent a major transmission route, and lower positive rate of air sample (6.8%) was likely due to natural ventilation (1.6–3.3 m/s) and regular disinfection practices. While there is a critical need for strengthening hospital discharge standards in preventing re-emergence of COVID-19 spread, use of breath sample as a supplement specimen could further guard the hospital discharge to ensure the safety of the public and minimize the pandemic re-emergence risk

    Purification and Characterization of Resistant Dextrin

    No full text
    In this study, an efficient method for the purification of resistant dextrin (RD) using membrane filtration and anion exchange resin decolorization was developed, then the purified RD was characterized. In the membrane filtration stage, suspended solids in RD were completely removed, and the resulting product had a negligible turbidity of 2.70 ± 0.18 NTU. Furthermore, approximately half of the pigments were removed. Static decolorization experiments revealed that the D285 anion exchange resin exhibited the best decolorization ratio (D%), 84.5 ± 2.03%, and recovery ratio (R%), 82.8 ± 1.41%, among all the tested resins. Under optimal dynamic decolorization conditions, the D% and R% of RD were 86.26 ± 0.63% and 85.23 ± 0.42%, respectively. The decolorization efficiency of the D285 resin was superior to those of activated carbon and H2O2. Moreover, the chemical characteristics and molecular weight of RD did not change significantly after purification. The nuclear magnetic resonance spectroscopy of RD showed the formation of new glycosidic linkages that are resistant to digestive enzymes. The superior water solubility (99.14%), thermal stability (up to 200 °C), and rheological properties of RD make it possible to be widely used in food industry

    Purification and Characterization of Resistant Dextrin

    No full text
    In this study, an efficient method for the purification of resistant dextrin (RD) using membrane filtration and anion exchange resin decolorization was developed, then the purified RD was characterized. In the membrane filtration stage, suspended solids in RD were completely removed, and the resulting product had a negligible turbidity of 2.70 ± 0.18 NTU. Furthermore, approximately half of the pigments were removed. Static decolorization experiments revealed that the D285 anion exchange resin exhibited the best decolorization ratio (D%), 84.5 ± 2.03%, and recovery ratio (R%), 82.8 ± 1.41%, among all the tested resins. Under optimal dynamic decolorization conditions, the D% and R% of RD were 86.26 ± 0.63% and 85.23 ± 0.42%, respectively. The decolorization efficiency of the D285 resin was superior to those of activated carbon and H2O2. Moreover, the chemical characteristics and molecular weight of RD did not change significantly after purification. The nuclear magnetic resonance spectroscopy of RD showed the formation of new glycosidic linkages that are resistant to digestive enzymes. The superior water solubility (99.14%), thermal stability (up to 200 °C), and rheological properties of RD make it possible to be widely used in food industry

    Synergistic effect of externally solidified crystals and Fe-rich intermetallic on the fracture behavior of HPDC alloy

    No full text
    The synergistic effect of externally solidified crystals (ESCs) and Fe-rich intermetallic on the fracture behavior of high pressure die casting Al–8Si-0.4 Mg–2Zn alloy was investigated using in-situ tensile test. The results revealed that the localized stress concentration during tensile test were significantly depended on the characteristic of ESCs and Fe-rich intermetallic. The crack preferentially initiated in the region where fine Fe-rich phase was surrounded by the clustered ESCs, this mainly attributed to the inconsistency of stress distribution in the clustered ESCs during tensile loading. Meanwhile, the primary Fe-rich phase with high aspect ratio is also beneficial to the crack initiation. The cracks were propagated both in the grain boundary and internal region of ESCs. The final fracture occurred in both the interfacial region between ESCs and other intermetallic and the internal region of ESCs
    corecore