153 research outputs found

    Machine Learning for Cancer Drug Combination

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154605/1/cpt1773_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154605/2/cpt1773.pd

    Annotation of Alternatively Spliced Proteins and Transcripts with Protein-Folding Algorithms and Isoform-Level Functional Networks.

    Get PDF
    Tens of thousands of splice isoforms of proteins have been catalogued as predicted sequences from transcripts in humans and other species. Relatively few have been characterized biochemically or structurally. With the extensive development of protein bioinformatics, the characterization and modeling of isoform features, isoform functions, and isoform-level networks have advanced notably. Here we present applications of the I-TASSER family of algorithms for folding and functional predictions and the IsoFunc, MIsoMine, and Hisonet data resources for isoform-level analyses of network and pathway-based functional predictions and protein-protein interactions. Hopefully, predictions and insights from protein bioinformatics will stimulate many experimental validation studies

    Harmonizing across datasets to improve the transferability of drug combination prediction

    Get PDF
    Combination treatment has multiple advantages over traditional monotherapy in clinics, thus becoming a target of interest for many high-throughput screening (HTS) studies, which enables the development of machine learning models predicting the response of new drug combinations. However, most existing models have been tested only within a single study, and these models cannot generalize across different datasets due to significantly variable experimental settings. Here, we thoroughly assessed the transferability issue of single-study-derived models on new datasets. More importantly, we propose a method to overcome the experimental variability by harmonizing dose-response curves of different studies. Our method improves the prediction performance of machine learning models by 184% and 1367% compared to the baseline models in intra-study and inter-study predictions, respectively, and shows consistent improvement in multiple cross-validation settings. Our study addresses the crucial question of the transferability in drug combination predictions, which is fundamental for such models to be extrapolated to new drug combination discovery and clinical applications that are de facto different datasets.A machine learning-based method improves the transferability of drug combination predictions across datasets from studies with variable experimental settings, such as the number of doses and dose ranges tested.Peer reviewe

    Incorporation of Extranodal Metastasis of Gastric Carcinoma into the 7th Edition UICC TNM Staging System

    Get PDF
    BACKGROUND: To assess the clinical significance and prognostic impact of extranodal metastasis (EM) in gastric carcinoma and establish an optimal classification in the staging system. METHODOLOGY/PRINCIPAL FINDINGS: A total of 1343 patients with gastric carcinoma who underwent surgical resection were recruited to determine the frequency and prognostic significance of EMs. EMs were divided into two groups (EM1 and EM2) and then incorporated into the 7(th) edition UICC TNM staging system. EMs was detected in 179 (13.3%) of 1343 patients who underwent radical resection. Multivariate analysis identified EMs as an independent prognostic factor (HR = 1.412, 95%CI = 1.151-1.731, P<0.001). After curative operation, the overall survival rate were worse in patients with ≥3 cases of EM (EM2) than those with the number of 1 and 2 cases (EM1) (P<0.001). Survival of patients with EM1 was found almost comparable to that of N3 stage (P = 0.437). Survival of patients with EM2 showed similar to that of stage IV patients (P = 0.896). By using the linear trend X(2), likelihood ratio X(2), and Akaike information criterion (AIC) test, EM1 treated as N3 stage and EM2 treated as M1 stage performed higher linear trend X(2) scores, likelihood ratio X(2) scores, and lower AIC value than the 7(th) edition UICC TNM staging system, which represented the optimum prognostic stratification, together with better homogeneity, discriminatory ability, and monotonicity of gradients. CONCLUSIONS/SIGNIFICANCE: EMs might be classified based on their number and prognostic information and should incorporate into the TNM staging system

    Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation

    Full text link
    Abstract Background Nitrogen limitation can induce neutral lipid accumulation in microalgae, as well as inhibiting their growth. Therefore, to obtain cultures with both high biomass and high lipid contents, and explore the lipid accumulation mechanisms, we implemented nitrogen deprivation in a model diatom Phaeodactylum tricornutum at late exponential phase. Results Neutral lipid contents per cell subsequently increased 2.4-fold, both the number and total volume of oil bodies increased markedly, and cell density rose slightly. Transcriptional profile analyzed by RNA-Seq showed that expression levels of 1213 genes (including key carbon fixation, TCA cycle, glycerolipid metabolism and nitrogen assimilation genes) increased, with a false discovery rate cut-off of 0.001, under N deprivation. However, most light harvesting complex genes were down-regulated, extensive degradation of chloroplast membranes was observed under an electron microscope, and photosynthetic efficiency declined. Further identification of lipid classes showed that levels of MGDG and DGDG, the main lipid components of chloroplast membranes, dramatically decreased and triacylglycerol (TAG) levels significantly rose, indicating that intracellular membrane remodeling substantially contributed to the neutral lipid accumulation. Conclusions Our findings shed light on the molecular mechanisms of neutral lipid accumulation and the key genes involved in lipid metabolism in diatoms. They also provide indications of possible strategies for improving microalgal biodiesel production.http://deepblue.lib.umich.edu/bitstream/2027.42/112455/1/13068_2012_Article_291.pd
    corecore