17 research outputs found

    Periostin: a promising target of therapeutical intervention for prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In our recent study, Periostin was up-regulated in prostate cancer(PCa) compared with benign prostate hyperplasia (BPH) by proteomics analysis of prostate biopsies. We investigated the effect of sliencing Periostin by RNA interference (RNAi) on the proliferation and migration of PCa LNCap cell line.</p> <p>Methods</p> <p>All the prostate biopsies from PCa, BPH and BPH with local prostatic intraepithelial neoplasm(PIN) were analyzed by iTRAQ(Isobaric tags for relative and absolute quantification) technology. Western blotting and immunohistochemical staining were used to verify Periostin expression in the tissues of PCa. Periostin expression in different PCa cell lines was determined by immunofluorescence staining, western blotting and reverse transcription PCR(RT-PCR). The LNCap cells with Periostin expression were used for transfecting shRNA-Periostin lentiviral particles. The efficancy of transfecting shRNA lentiviral particles was evaluated by immunofluorescence, western blotting and Real-time PCR. The effect of silencing Periostin expression by RNAi on proliferation of LNCap cells was determined by MTT assay and tumor xenografts. The tissue slices from theses xenografts were analyzed by hematoxylin and eosin(HE) staining. The expression of Periostin in the xenografts was deteminned by Immunohistochemical staining and western blotting. The migration of LNCap cells after silencing Periostin gene expression were analyzed in vitro.</p> <p>Results</p> <p>Periostin as the protein of interest was shown 9.12 fold up-regulation in PCa compared with BPH. The overexpression of Periostin in the stroma of PCa was confirmed by western blotting and immunohistochemical staining. Periostin was only expressed in PCa LNCap cell line. Our results indicated that the transfection ratio was more than 90%. As was expected, both the protein level and mRNA level of Periostin in the stably expressing shRNA-Periostin LNCap cells were significantly reduced. The stably expressing shRNA-Periostin LNCap cells growed slowly in vitro and in vivo. The tissues of xenografts as PCa were verificated by HE staining. Additionally, the weak positive Periostin expressed tumor cells could be seen in the tissues of 6 xenografts from the group of down-regulated Periostin LNCap cells which had a significant decrease of the amount of Periostin compared to the other two group. Furthermore, our results demonstrated that sliencing Periostin could inhibit migration of LNCap cells in vitro.</p> <p>Conclusions</p> <p>Our data indicates that Periostin as an up-regulated protein in PCa may be a promising target of therapeutical intervention for PCa in future.</p

    Retroperitoneal Laparoscopic Ureterolithotomy for Proximal Ureteral Calculi in Selected Patients

    Get PDF
    Objectives. To summarize our experience of retroperitoneal laparoscopic ureterolithotomy for ureteral calculi and evaluate the safety and efficiency of this procedure. Methods. We conducted a retrospective analysis of 197 patients with proximal ureteral calculi who accepted retroperitoneal laparoscopic ureterolithotomy from June 2005 to June 2014. Results. All procedures were performed successfully and the mean operating time and estimated blood loss were 87 min and 64 mL. The clearance rate was 98.5% and the rates of urine leak and ureteral stricture were 2.5% and 1.0%. Conclusions. Retroperitoneal laparoscopic ureterolithotomy is a safe and effective procedure for patients with complex stones or anatomic abnormalities, and, with experience of high volume series, it is also a reasonable choice as the primary treatment for such selected patients

    Periostin Mediates TGF-β-Induced Epithelial Mesenchymal Transition in Prostate Cancer Cells

    No full text
    Background: In our previous study, we found that periostin was upregulated in prostate cancer, and its expression could be modulated by TGF-β. TGF-β could upregulate periostin expression in some cells, and both TGF-β and periostin could induce epithelial mesenchymal transition (EMT). We aimed to study the effect of periostin in the process of TGF-β-induced EMT in prostate cancer cells. Methods: We constructed a lentivirus vector containing the periostin gene and transduced it into PC3 and DU145 cells. After confirming periostin overexpression by PCR and Western blotting, we used an MTT assay to establish a growth curve to measure cell proliferation. Additionally, we performed transwell and wound healing assays to measure cell invasion and migration, respectively. Lastly, we measured the expression of EMT associated factors using Western blot analysis to test the effect of periostin on EMT in prostate cancer cells. Results: PCR and Western blot analyses confirmed that periostin was upregulated after infection with the periostin lentiviral vector. Periostin overexpression promoted increased cell proliferation, invasion, and migration as measured by MTT, transwell, and wound healing assays, respectively. Western blot analysis illustrated that periostin overexpression increased the expression of EMT associated factors, and periostin overexpression activated Akt and GSK-3β, which could be inhibited using a PI3K inhibitor. Additionally, TGF-β increased the levels of STAT3, Twist1 and periostin, while both STAT3 shRNA and Twist1 shRNA inhibited periostin expression. However, STAT3 shRNA also decreased Twist1 expression. Although reduction of STAT3, Twist1 or periostin levels with shRNA inhibited TGF-β-induced overexpression of EMT associated factors, periostin overexpression could reverse such inhibition by interfering with STAT3 and Twist1. Similarly, periostin overexpression also reversed inhibition of cell invasion induced by interference of STAT3 and Twist1. Conclusion: Our findings indicate that periostin is an important mediator of TGF-β-induced EMT and suggest that periostin is a potential therapeutic target for suppressing the metastatic progression of prostate cancer
    corecore