25 research outputs found
Compact InGaAs/InP single-photon detector module with ultra-narrowband interference circuits
Gated InGaAs/InP avalanche photodiodes are the most practical device for
detection of telecom single photons arriving at regular intervals.Here, we
report the development of a compact single-photon detector (SPD) module
measured just 8.8cm * 6cm * 2cm in size and fully integrated with driving
signal generation, faint avalanche readout, and discrimination circuits as well
as temperature regulation and compensation. The readout circuit employs our
previously reported ultra-narrowband interference circuits (UNICs) to eliminate
the capacitive response to the gating signal. We characterize a UNIC-SPD module
with a 1.25-GHz clock input and find its performance comparable to its
counterpart built upon discrete functional blocks. Setting its detection
efficiency to 30% for 1,550-nm photons, we obtain an afterpulsing probability
of 2.4% and a dark count probability of 8E-7 per gate under 3-ns hold-off time.
We believe that UNIC-SPDs will be useful in important applications such as
quantum key distribution
Ultra-narrowband interference circuits enable low-noise and high-rate photon counting for InGaAs/InP avalanche photodiodes
Afterpulsing noise in InGaAs/InP single photon avalanche photodiodes (APDs)
is caused by carrier trapping and can be suppressed successfully through
limiting the avalanche charge via sub-nanosecond gating. Detection of faint
avalanches requires an electronic circuit that is able to effectively remove
the gate-induced capacitive response while keeping photon signals intact. Here
we demonstrate a novel ultra-narrowband interference circuit (UNIC) that can
reject the capacitive response by up to 80 dB per stage with little distortion
to avalanche signals. Cascading two UNIC's in a readout circuit, we were able
to enable high count rate of up to 700 MC/s and low afterpulsing of 0.5 % at a
detection efficiency of 25.3 % for 1.25 GHz sinusoidally gated InGaAs/InP APDs.
At -30 degree C, we measured 1 % afterpulsing at a detection efficiency of 21.2
%
Properties of localization in silicon-based lattice periodicity breaking photonic crystal waveguides
The light localization effects in silicon photonic crystal cavities at different disorder degrees have been studied using the finite difference time domain (FDTD) method in this paper. Numerical results showed that localization occurs and enhancement can be gained in the region of the cavity under certain conditions. The stabilities of the localization effects due to the structural perturbations have been investigated too. Detailed studies showed that when the degree of structural disorder is small(about 10%), the localization effects are stable, the maximum enhancement factor can reach 16.5 for incident wavelength of 785 nm and 23 for 850 nm in the cavity, with the degree of disorder about 8%. The equivalent diameter of the localized spot is almost constant at different disorder degrees, approximating to {\lambda \mathord{/ {\vphantom {\lambda 7}} \kern-\nulldelimiterspace} 7}λ/7, which turned out to be independent on the structural perturbation
A Scalable Joint Estimation Algorithm for SOC and SOH of All Individual Cells within the Battery Pack and Its HIL Implementation
Accurately obtaining the state of charge (SOC) and health (SOH) of all individual batteries in a battery pack can provide support for data acquisition, state estimation, and fault diagnosis. To verify the real-time performance and accuracy of the joint estimation algorithm for high-voltage battery packs composed of 96 individual cells in series, this article applies Simulink to develop a joint estimation algorithm for SOC and SOH based on the first-order RC equivalent circuit model (1RC ECM) and implements the algorithm’s cyclic calling for series nodes, enhancing the algorithm’s scalability. In the algorithm, the recursive least square method with fitting factor (FFRLS) is applied to calculate OCV, R0, and R1 in the time domain, and dual adaptive extended Kalman filter (DAEKF) is applied to joint estimation of SOC and SOH at multiple time scales. Finally, with the help of dSPACE and FASECU controllers, hardware in the loop (HIL) testing was completed in multiple scenarios. The results showed that the algorithm can accurately calculate the state of individual cells in real time, and even under various initial value deviations, it still has good regression performance, laying the foundation for future applications of electric vehicles
Numerical Investigation on the Influence of Mechanical Draft Wet-Cooling Towers on the Cooling Performance of Air-Cooled Condenser with Complex Building Environment
In air-cooled power units, an air-cooled condenser (ACC) is usually accompanied by mechanical draft wet-cooling towers (MCTs) so as to meet the severe cooling requirements of air-cooling auxiliary apparatuses, such as water ring vacuum pumps. When running, both the ACC and MCTs affected each other through their aerodynamic fields. To make the effect of MCTs on the cooling performance of the ACC more prominent, a three-dimensional (3D) numerical model was established for one 2 × 660 MW air-cooling power plant, with full consideration the ACC, MCTs and adjacent main workshops, which was validated by design data and published test results. By numerical simulation, we obtained the effect of hot air recirculation (HAR) on the cooling performance of the ACC under different working conditions and the effect of MCTs on the cooling performance of the ACC. The results showed that as the ambient wind speed increases, the hot recirculation rate (HRR) of the ACC increased and changed significantly with the change of wind directions. An increase in ambient temperature can cause a significant rise in back pressure of the ACC. The exhaust of the MCTs partially entered the ACC under the influence of ambient wind, and the HRR in the affected cooling units was higher than that of the nearby unaffected cooling units. When the MCTs were turned off, the overall HRR of the ACC decreased. The presence of MCTs had a local influence on the cooling performance of only two cooling units, and then slightly impacted the overall cooling performance of the ACC, which provides a good insight into the arrangement optimization of the ACC and the MCTs
Electrospun Biodegradable Poly(L-lactic acid) Nanofiber Membranes as Highly Porous Oil Sorbent Nanomaterials
Crude oil spills seriously harm the ocean environment and endanger the health of various animals and plants. In the present study, a totally biodegradable polymer, poly(L-lactic acid) (PLLA), was employed to fabricate highly porous oil absorbent nanofibrous materials by using a combination of electrospinning technique and subsequent acetone treatment. We systematically investigated how the electrospinning parameters affected formation of the porous structure of PLLA nanofibers and demonstrated that PLLA nanofibers with decreased and uniform diameter and improved porosity could be rapidly prepared by adjusting solution parameters and spinning parameters. We also demonstrated that the acetone treatment could obviously enhance the pore diameter and specific surface area of as-optimized electrospun PLLA nanofibers. The acetone treatment could also improve the hydrophobic property of as-treated PLLA nanofiber membranes. All these led to a significant increase in oil absorption performance. Through our research, it was found that the oil absorption of PLLA nanofiber membrane increased by more than double after being treated with acetone and the oil retention rate was also improved slightly
Anti-Malignant Ascites Effect of Total Diterpenoids from Euphorbiae ebracteolatae Radix Is Attributable to Alterations of Aquaporins via Inhibiting PKC Activity in the Kidney
This study evaluated the anti-ascites effect of total diterpenoids extracted from Euphorbiae ebracteolatae Radix (TDEE) on malignant ascitic mice and elucidated its underlying mechanism. TDEE was extracted by dichloromethane and subjected to column chromatography. The purity of six diterpenoids isolated from TDEE was determined to be 77.18% by HPLC. TDEE (3 and 0.6 g raw herbs/kg, p.o.) reduced ascites and increased urine output. Meanwhile, analysis of tumor cell viability, cycle and apoptosis indicated that TDEE had no antitumor activity. In addition, the expression levels of aquaporins (AQPs) and the membrane translocation levels of protein kinase C (PKC) α and PKCβ in kidney and cells were measured. TDEE reduced the levels of AQP1–4, and inhibited PKCβ expression in membrane fraction. Four main diterpenoids, except compound 2, reduced AQP1 level in human kidney-2 cells. Compounds 4 and 5 inhibited AQP2–4 expression in murine inner medullary collecting duct cells. The diterpenoid-induced inhibition of AQP1–4 expression was blocked by phorbol-12-myristate-13-acetate (PMA; agonist of PKC). The diterpenoids from TDEE are the main anti-ascites components. The anti-ascites effect of diterpenoids may be associated with alterations in AQPs in the kidneys to promote diuresis. The inhibition of AQP1–4 expression by TDEE is related to the inhibition of PKCβ activation
Simultaneous Recognition of Species, Quality Grades, and Multivariate Calibration of Antioxidant Activities for 12 Famous Green Teas Using Mid- and Near-Infrared Spectroscopy Coupled with Chemometrics
In this paper, mid- and near-infrared spectroscopy fingerprints were combined to simultaneously discriminate 12 famous green teas and quantitatively characterize their antioxidant activities using chemometrics. A supervised pattern recognition method based on partial least square discriminant analysis (PLSDA) was adopted to classify the 12 famous green teas with different species and quality grades, and then optimized sample-weighted least-squares support vector machine (OSWLS-SVM) based on particle swarm optimization was employed to investigate the quantitative relationship between their antioxidant activities and the spectral fingerprints. As a result, 12 famous green teas can be discriminated with a recognition rate of 100% by MIR or NIR data. However, compared with individual instrumental data, data fusion was more adequate for modeling the antioxidant activities of samples with RMSEP of 0.0065. Finally, the performance of the proposed method was evaluated and validated by some statistical parameters and the elliptical joint confidence region (EJCR) test. The results indicate that fusion of mid- and near-infrared spectroscopy suggests a new avenue to discriminate the species and grades of green teas. Moreover, the proposed method also implies other promising applications with more accurate multivariate calibration of antioxidant activities