748 research outputs found

    Developing Dipole-scheme Heterojunction Photocatalysts

    Full text link
    The high recombination rate of photogenerated carriers is the bottleneck of photocatalysis, severely limiting the photocatalytic efficiency. Here, we develop a dipole-scheme (D-scheme for short) photocatalytic model and materials realization. The D-scheme heterojunction not only can effectively separate electrons and holes by a large polarization field, but also boosts photocatalytic redox reactions with large driving photovoltages and without any carrier loss. By means of first-principles and GW calculations, we propose a D-scheme heterojunction prototype with two real polar materials, PtSeTe/LiGaS2. This D-scheme photocatalyst exhibits a high capability of the photogenerated carrier separation and near-infrared light absorption. Moreover, our calculations of the Gibbs free energy imply a high ability of the hydrogen and oxygen evolution reaction by a large driving force. The proposed D-scheme photocatalytic model is generalized and paves a valuable route of significantly improving the photocatalytic efficiency.Comment: 10 pages, 5 figure

    The chinese herbal decoction danggui buxue tang inhibits angiogenesis in a rat model of liver fibrosis.

    Get PDF
    In this study, we investigated the anti-angiogenic effect of the Chinese herbal decoction Danggui Buxue Tang (DBT; Radix Astragali and Radix Angelicae sinensis in 5 : 1 ratio) in a rat model of liver fibrosis, in order to elucidate its mechanisms of action against liver fibrosis. Liver fibrosis was induced with CCl(4) and high-fat food for 6 weeks, and the rats were treated with oral doses of DBT (6 g raw herbs/kg/d) and N-Acetyl-L-cysteine (NAC; 0.1 g/kg/d). The results showed that both DBT and NAC attenuated liver fibrosis and neo-angiogenesis. Furthermore, DBT and NAC improved SOD activity but decreased MDA content and 8-OH-dG in fibrotic livers, with DBT being more effective than NAC. DBT decreased the expression of VEGF, Ang1 and TGF-β1 and their signaling mediators, whereas NAC had no effect on VEGF and VEGFR2 expression. Both DBT and NAC reduced HIF-1α gene and protein expression in fibrotic livers, with DBT being more effective. These data clearly demonstrate that the anti-fibrotic properties of DBT are related to its ability to inhibit angiogenesis and its anti-angiogenic mechanisms are associated with improving oxidative stress, regulating the expression and signaling of angiogenic factors, and especially modulating HIF-1α in fibrotic livers

    Hypophosphatemia during continuous veno-venous hemofiltration is associated with mortality in critically ill patients with acute kidney injury

    Get PDF
    INTRODUCTION: The primary aim of this study was to determine whether hypophosphatemia during continuous veno-venous hemofiltration (CVVH) is associated with the global outcome of critically ill patients with acute kidney injury (AKI). METHODS: 760 patients diagnosed with AKI and had received CVVH therapy were retrospectively recruited. Death during the 28-day period and survival at 28 days after initiation of CVVH were used as endpoints. Demographic and clinical data including serum phosphorus levels were recorded along with clinical outcome. Hypophosphatemia was defined according to the colorimetric method as serum phosphorus levels < 0.81 mmol/L (2.5 mg/dL), and severe hypophosphatemia was defined as serum phosphorus levels < 0.32 mmol/L (1 mg/dL). The ratio of CVVH therapy days with hypophosphatemia over total CVVH therapy days was calculated to reflect the persistence of hypophosphatemia. RESULTS: The Cox proportional hazard survival model analysis indicated that the incidence of hypophosphatemia or even severe hypophosphatemia was not associated with 28-day mortality independently (p = 0.700). Further analysis with the sub-cohort of patients who had developed hypophosphatemia during the CVVH therapy period indicated that the mean ratio of CVVH therapy days with hypophosphatemia over total CVVH therapy days was 0.58, and the ratio independently associated with the global outcome. Compared with the patients with low ratio (< 0.58), those with high ratio (≥ 0.58) conferred a 1.451-fold increase in 28-day mortality rate (95% CI 1.103–1.910, p = 0.008). CONCLUSIONS: Hypophosphatemia during CVVH associated with the global clinical outcome of critically ill patients with AKI. The ratio of CVVH therapy days with hypophosphatemia over total CVVH therapy days was independently associated with the 28-day mortality, and high ratio conferred higher mortality rate

    Prognostic value of lymph node ratio in patients with pathological N1 non-small cell lung cancer: A systematic review with meta-analysis

    Get PDF
    Background: Non-small cell lung cancer (NSCLC) patients with N1 disease have variable outcomes, and additional prognostic factors are needed. The number of positive lymph nodes (LNs) has been proposed as a prognostic indicator. However, the number of positive LNs depends on the number of LNs examined from the resection specimen. The lymph node ratio (LNR) can circumvent this limitation. The purpose of this study is to evaluate LNR as a predictor of survival and recurrence in patients with pathologic N1 NSCLC. Methods: We systematically reviewed studies published before March 17, 2016, on the prognostic value of LNR in patients with pathologic N1 NSCLC. The hazard ratios (HRs) and their 95% confidence intervals (CIs) were used to combine the data. We also evaluated heterogeneity and publication bias. Results: Five studies published between 2010 and 2014 were eligible for this systematic review with metaanalysis. The total number of patients included was 6,130 ranging from 75 to 4,004 patients per study. The combined HR for all eligible studies evaluating the overall survival (OS) and disease-free survival (DFS) of N1 LNR in patients with pathologic N1 NSCLC was 1.53 (95% CI: 1.22-1.85) and 1.64 (95% CI: 1.19-2.09), respectively. We found no heterogeneity and publication bias between the reports. Conclusions: LNR is a worthy predictor of survival and cancer recurrence in patients with pathological N1 NSCLC

    Secure Testing for Genetic Diseases on Encrypted Genomes with Homomorphic Encryption Scheme

    Get PDF
    The decline in genome sequencing costs has widened the population that can afford its cost and has also raised concerns about genetic privacy. Kim et al. present a practical solution to the scenario of secure searching of gene data on a semitrusted business cloud. However, there are three errors in their scheme. We have made three improvements to solve these three errors. (1) They truncate the variation encodings of gene to 21 bits, which causes LPCE error and more than 5% of the entries in the database cannot be queried integrally. We decompose these large encodings by 44 bits and deal with the components, respectively, to avoid LPCE error. (2) We abandon the hash function used in Kim’s scheme, which may cause HCE error with a probability of 2-22 and decompose the position encoding of gene into three parts with the basis 211 to avoid HCE error. (3) We analyze the relationship between the parameters and the CCE error and specify the condition that parameters need to satisfy to avoid the CCE error. Experiments show that our scheme can search all entries, and the probability of searching error is reduced to less than 2-37.4

    Effective components screening and anti-myocardial infarction mechanism study of the Chinese medicine NSLF6 based on "system to system" mode

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Shuanglong </it>formula (SLF), a Chinese medicine composed of <it>panax ginseng </it>and <it>salvia miltiorrhiza </it>exhibited significant effect in the treatment of myocardial infarction (MI) in clinical. Because of the complex nature and lack of stringent quality control, it's difficult to explain the action mechanism of SLF.</p> <p>Method</p> <p>In this study, we present a "system to system" (S2S) mode. Based on this mode, SLF was simplified successively through bioactivity-guided screening to achieve an optimized minimal phytochemical composition (new formula NSLF6) while maintaining its curative effect for MI.</p> <p>Results</p> <p>Pharmacological test combining with the study of systems biology show that NSLF6 has activity for treatment MI through synergistic therapeutic efficacies between total ginsenosides and total salvianolic acids via promoting cardiac cell regeneration and myocardial angiogenesis, antagonistic myocardial cell oxidative damage.</p> <p>Conclusions</p> <p>The present S2S mode may be an effective way for the discovery of new composite drugs from traditional medicines.</p

    Interleukin-17A Contributes to Myocardial Ischemia/Reperfusion Injury by Regulating Cardiomyocyte Apoptosis and Neutrophil Infiltration

    Get PDF
    ObjectivesThis study tested whether interleukin (IL)-17A is involved in the pathogenesis of mouse myocardial ischemia/reperfusion (I/R) injury and investigated the mechanisms.BackgroundInflammatory processes play a major role in myocardial I/R injury. We recently identified IL-17A as an important cytokine in inflammatory cardiovascular diseases such as atherosclerosis and viral myocarditis. However, its role in myocardial I/R injury remains unknown.MethodsThe involvement of IL-17A was assessed in functional assays in mouse myocardial I/R injury by neutralization/repletion or genetic deficiency of IL-17A, and its mechanism on cardiomyocyte apoptosis and neutrophil infiltration were further studied in vivo and in vitro.ResultsInterleukin-17A was elevated after murine left coronary artery ligation and reperfusion. Intracellular cytokine staining revealed that γδT lymphocytes but not CD4+ helper T cells were a major source of IL-17A. Anti–IL-17A monoclonal antibody treatment or IL-17A knockout markedly ameliorated I/R injury, as demonstrated by reduced infarct size, reduced cardiac troponin T levels, and improved cardiac function. This improvement was associated with a reduction in cardiomyocyte apoptosis and neutrophil infiltration. In contrast, repletion of exogenous IL-17A induced the opposite effect. In vitro study showed that IL-17A mediated cardiomyocyte apoptosis through regulating the Bax/Bcl-2 ratio, induced CXC chemokine-mediated neutrophil migration and promoted neutrophil-endothelial cell adherence through induction of endothelial cell E-selectin and inter-cellular adhesion molecule-1 expression.ConclusionsIL-17A mainly produced by γδT cells plays a pathogenic role in myocardial I/R injury by inducing cardiomyocyte apoptosis and neutrophil infiltration
    corecore