
Research Article
Secure Testing for Genetic Diseases on Encrypted
Genomes with Homomorphic Encryption Scheme

Tan Ping Zhou ,1,2,3 Ning Bo Li,1,2 Xiao Yuan Yang ,1,2 Li Qun Lv,1

Yi Tao Ding,1 and Xu An Wang 1

1Key Laboratory of Network & Information Security under the People’s Armed Police, Electronic Department,
Engineering University of People’s Armed Police, Xi’an 710086, China
2State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China

Correspondence should be addressed to Xiao Yuan Yang; yxyangyxyang@163.com and Xu AnWang; wangxazjd@163.com

Received 16 October 2017; Revised 3 January 2018; Accepted 22 January 2018; Published 20 March 2018

Academic Editor: Daniele Sgandurra

Copyright © 2018 Tan Ping Zhou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The decline in genome sequencing costs has widened the population that can afford its cost and has also raised concerns about
genetic privacy. Kim et al. present a practical solution to the scenario of secure searching of gene data on a semitrusted business
cloud. However, there are three errors in their scheme. We have made three improvements to solve these three errors. (1) They
truncate the variation encodings of gene to 21 bits, which causes LPCE error andmore than 5% of the entries in the database cannot
be queried integrally. We decompose these large encodings by 44 bits and deal with the components, respectively, to avoid LPCE
error. (2)Weabandon the hash function used inKim’s scheme,whichmay causeHCE errorwith a probability of 2−22 and decompose
the position encoding of gene into three parts with the basis 211 to avoid HCE error. (3)We analyze the relationship between the
parameters and the CCE error and specify the condition that parameters need to satisfy to avoid the CCE error. Experiments show
that our scheme can search all entries, and the probability of searching error is reduced to less than 2−37.4.

1. Introduction

Genes are the intrinsic nature of humanhealth. All human life
activities and physiological phenomena are directly related
to the gene. Genome data can be used for a wide range of
applications including healthcare, biomedical research, and
forensics [1]. Gene sequencing technology is the core of the
human genome project; the genome sequencing technology
helps humans to better understand the whole life activities
of cells and organisms, and it is also of great significance for
the prevention and treatment of some diseases, such as cancer
and genetic diseases.

Advances in high throughput technologies have made
it increasingly affordable to sequence the human genome
in various settings, ranging from biomedical research to
healthcare [2]. Relevant data show that in 2000 the cost of
whole genome sequencing for human is nearly $3 billion, and
by 2015, the cost of single genome sequencing is reduced to

less than $1,000, and the sequencing costs for certain sites on
the genome are lower.

The decline in genome sequencing costs has widened the
population that can afford the cost of gene sequencing and
has also raised concerns about genetic privacy. Genetic data
can be widely used in healthcare, biomedical research and
identification, and other fields, with a strong personal privacy
characteristics. More and more businesses and individuals
put the computing processing of genetic data to cloud
services, but the current commercial cloud server does not
fully guarantee the privacy and security of genetic data. This
raises concerns about the privacy of sensitive information
since data is stored in external, off-premise data centers.
In particular in the health sector, sensitive personal patient
records need to be kept confidential [3].

There are a number of technical solutions that have been
proposed to protect genome privacy, and existing studies
can be categorized into two groups [4]: (i) protecting the
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computation process in genome data analysis [5–7] and (ii)
protecting the genome data before computation [8, 9] or
research outcomes after computation [10].

In order to prevent the user’s genetic data from being
compromised by unauthorized users or organizations, pro-
tecting genetic privacy is an urgent problem. To mitigate
the privacy risks inherent in storing and computing sensitive
data, cryptography offers a potential solution in the form of
encryption [11]; only the legitimate data owner can access the
data by decrypting it using their private decryption key.

However, sometimes the calculation and analysis of
genetic data need to be implemented in the cloud due to
the limitation of personal computing power and genetic
diagnosis algorithm patent, the need for cloud server, the
user’s genetic data analysis, and analysis to help get the user
diagnosis and treatment of the relevant information. Never-
theless, traditional cryptographic schemes limit the compu-
tation process on the ciphertext stored on the cloud and also
prevent the data center from performing computation on it
without the decryption key.

Homomorphic encryption can do computation on the
encrypted data in the case of unknown secret key, and the
decryption results of the ciphertext data are equivalent to the
corresponding plaintext for the same processing operations.
In 2009,Gentry proposed the first FHE scheme and described
the framework blueprint of the FHE [12]. Since then many
improvements to FHE have been proposed based on Gentry’s
work such as [13–17].

Homomorphic encryption-based methods which sup-
port secure genome data computation have been studied.
Cheon et al. [5] studied how to calculate edit distance of
encrypted gene data homomorphically. Yasuda et al. [18]
described how to compute multiple Hamming distance val-
ues using the LNV scheme [19] on encrypted data. Graepel
et al. [20] and Bos et al. [3] applied HE to machine learning
and described how to privately conduct predictive analysis
based on an encrypted learned model. Lauter et al. [7] gave a
solution to privately compute the basic genomic algorithms
used in genetic association studies.

To achieve safe genetic data analysis, iDASH (integrating
Data for Analysis, Anonymization, and SHaring) National
Center has released annual security challenges regarding
genetic privacy protection since 2014. In 2016, the challenge
of testing for genetic diseases on encrypted genomes (secure
outsourcing) was published to calculate the probability of
genetic diseases through matching a set of biomarkers to
encrypted genomes stored in a commercial cloud service.The
requirement is that the entire matching process (only con-
sider the exact match for each variation) needs to be carried
out using homomorphic encryption so that no trace is
left behind during the computation.

For the challenge published by iDASH, Kim et al. give a
practical solution called [KSC17], which uses the homomor-
phic encryption technique to encrypt the entire gene database
as a polynomial on the ring, thus solving the challenge of
testing genetic disease (security outsourcing) to a certain
extent [21].

The application scenario of this paper is shown in Figure 1.
There are three parties involved in this scenario: the user

(hospital or medical institution that has patient’s gene data),
the semitrusted commercial cloud service, and data owner
(the research institute that has the genetic variation database).
The purpose of this system is to determine if a patient’s gene
data is presented in the gene variation database.

System Initialization. Data owner encrypts the gene variation
database and uploads the ciphertexts to the commercial cloud
server. Then, the user interacts with the cloud server to com-
plete the testing process. Step 1: the user encrypts the patient’s
gene data and uploads the ciphertexts to the commercial
cloud server. Step 2: the cloud homomorphically searches
user’s gene data in database and generates a ciphertext of
searching result. Step 3: the cloud sends the ciphertexts to the
user. Step 4: the user decrypts the ciphertexts and concludes
whether the patient’s gene data is presented in the gene
variation database.The source code of our implementation is
available on github https://github.com/lonyliu/genetest.

Our Contributions. The contributions of this paper focus on
optimizing the design and improving the correctness of the
scheme. Through the analysis of the [21] and its related code,
we found three types of query errors in [KSC17], called
losing of partial coefficient error (LPCE), hash collision error
(HCE), and coefficient combination error (CCE), and made
some improvements as follows.

(1) The gene data is encoded by prefix code so as to detect
more entries in the gene database with fewer bits than
[KSC17].

(2) Correcting the LPCE error: [KSC17] truncates the
variation encodings of gene to 21 bits, which causes
partial coefficient losing; thus more than 5% of the
entries in the database cannot be queried integrally.
In this paper, we decompose the encodings of gene
variation by 44 bits, then optimize, encrypt, and query
the components, respectively. As a result, all the en-
tries can be queried effectively in the database.

(3) Correcting the HCE error: [KSC17] uses the method
of hash function unreasonably, whichmay causeHCE
errorwith a probability of 2−22. In this paper, we aban-
don the hash function by adding half the ciphertext of
database, thus avoiding the hash collision.

(4) Correcting the CCE error: [KSC17] cannot distin-
guish the different groups of gene data, which may
return incorrect results with nonnegligible probabil-
ity. In this paper, we analyze the relationship between
the core parameter 𝑙snp (bit size of the encoding for
gene variation) and CCE error and specify the con-
dition that parameter 𝑙snp needs to satisfy, so that the
probability of CCE errors is negligible.

2. Practical Homomorphic Encryptions

This section describes the homomorphic encryption schemes
which are used in our genetic privacy protection. First, some
symbols and parameters are described below.

For the security parameter 𝜆, let integer 𝑀 = 𝑀(𝜆)
define the 𝑀th cyclotomic polynomial Φ�푀(𝑥), Throughout

https://github.com/lonyliu/genetest


Security and Communication Networks 3

User Data
owner

Cloud service
(semitrusted)

Homomorphic searching user’s
gene data in gene database

Ciphertexts of
gene data

Ciphertexts of research
result

Decrypts the ciphertexts
and outputs result

Storage

Homomorphic
operations �e ciphertexts

of gene variation
database

3
2

4

1

Figure 1: The application scenario of secure testing for genetic diseases.

this paper, we assume that the integer𝑀 is a power of two so
that 𝑁 = 𝑀/2 and Φ�푀(𝑥) = 𝑋�푁 + 1. Both of our
homomorphic encryption schemes operate in the polynomial
ring R = Z[𝑥]/Φ�푀(𝑥). [⋅]�푄 denotes the reduction modulo
𝑄 into the interval (−𝑄/2, 𝑄/2] ∩ Z of the integer or integer
polynomial (coefficient-wise). Set the plaintext space toR�푡 fl
R/𝑡R for some fixed 𝑡 ≥ 2 and the ciphertext space to
R�푄 fl R/𝑄R for an integer𝑄 = 𝑄(𝜆). Let𝜒 = 𝜒(𝜆) denote a
noise distribution over the ringR. Notation 𝑎 ← 𝐷 denotes
that 𝑎 is chosen from the distribution 𝐷, and 𝑎 �푅← 𝐷 denote
that 𝑎 is randomly chosen from the distribution𝐷.

We give the brief introduction of the RLWE scheme [22]
and the Ring-GSW scheme [23].

2.1. The RLWE Scheme. First basic homomorphic encryption
scheme is based on the hardness of Ring Learningwith Errors
(RLWE) assumption, which is proposed by Lyubashevsky,
Peikert, and Regev. The RLWE assumption is divided into
decisional RLWE assumption and computational RLWE
assumption. The decisional RLWE assumption implies the
infeasible solution to distinguish the following two distribu-
tions: pairs (𝑎�푖, 𝑏�푖) where (𝑎�푖, 𝑏�푖) �푅← R2Q and pairs (𝑎�푖, 𝑏�푖) =
(𝑎�푖, 𝑎�푖𝑠+𝑒�푖)where 𝑎�푖 �푅←RQ and 𝑠, 𝑒�푖 �푅← 𝜒.The computational
RLWEassumption is that it is hard to find the key 𝑠 frommany
samples (𝑎�푖, 𝑏�푖) = (𝑎�푖, 𝑎�푖𝑠 + 𝑒�푖).

The RLWE scheme is described as follows:

(i) RLWE.ParamsGen(𝜆): given the security parameter
𝜆, choose an integer𝑀 = 𝑀(𝜆)which is a power of 2,
a ciphertext modulus 𝑄 = 𝑄(𝜆), a plaintext modulus
𝑡 with 𝑡 | 𝑄, and discrete Gaussian distribution 𝜒err.
Output params← (𝑀,𝑄, 𝑡, 𝜒err).

(ii) RLWE.KeyGen(params): for input parameters𝑀, let
𝑁 = 𝜙(𝑀) and choose a random sparse 𝑠 ← {0, ±1}�푁.
Generate an RLWE instance (𝑎, 𝑏) = (𝑎, [−𝑎𝑠 + 𝑒]�푄)
for 𝑒 ← 𝜒err. Set the secret key sk ← 𝑠 and the public
key pk ← (𝑎, 𝑏).

(iii) RLWE.Enc(𝑚, pk): for the input plaintext 𝑚 =
∑�푖𝑚�푖𝑋�푖 ∈ R�푡, choose a small polynomial V ∈ R and

twoGaussian polynomials 𝑒0, 𝑒1 ←R, and output the
ciphertext ct:

ct = (𝑐0, 𝑐1) = (𝑄𝑡 𝑚 + 𝑏V + 𝑒0, 𝑎V + 𝑒1) ∈R
2
�푄. (1)

(iv) RLWE.Dec(ct, sk): given the ciphertext ct = (𝑐0, 𝑐1),
output the plaintext𝑚:

𝑚 ← ⌊( 𝑡
𝑄) ⋅ [𝑐0 + 𝑠 ⋅ 𝑐1]�푄⌉ . (2)

(v) RLWE.Add(ct1, ct2, ct3, sk): given three ciphertexts
ct1, ct2, ct3 with the same secret key sk, output the
ciphertext ct = ct1 + ct2 + ct3 ∈R2�푄.

Conversion and Modulus Switching techniques have
been introduced in [KSC17]. Conversion technique can
change an RLWE ciphertext of 𝑚 = ∑�푖𝑚�푖𝑋�푖 ∈ R�푡 into an
LWE encryption of its constant term𝑚0. Modulus Switching
technique reduces the ciphertext modulus𝑄 down to 𝑞while
preserving the message, thus reducing the size of ciphertext.

2.2. The Ring-GSW Scheme. In 2013, Gentry et al. proposed
an LWE-based homomorphic encryption scheme [16], which
uses the approximate eigenvector method to express cipher-
text as a matrix, so that the addition and multiplication
of ciphertext no longer cause dimension expansion. In this
paper, we use its RLWE version introduced by Ducas and
Micciancio [23], and its encryption algorithm is given below:

(i) RGSW.ParamsGen(⋅): given the same parameters and
secret key 𝑠 as in the RLWE scheme, set the decompo-
sition base 𝐵�푔 and exponent 𝑑�푔 satisfying 𝐵�푔�푑�푔 > 𝑄.
Given a small matrix G = (I‖𝐵�푔I ‖ ⋅ ⋅ ⋅ ‖𝐵�푔�푑�푔−1I) ∈
R
2�푑�푔×2

�푄 for 2 × 2 identity matrix I.
(ii) RGSW.Enc(𝑚, sk): given the plaintext 𝑚 ∈ R�푡,

choose a matrix a �푅← R
2�푑�푔×1

�푄 uniformly, and e �푅←
𝜒�휍 (e ∈R

2�푑�푔
�푄 ≃ Z2�푑�푔∙�푛); output the ciphertext CT:

CT = [b, a] + 𝑚G ∈R
2�푑�푔×2

�푄 , (b = −a ⋅ s + e) . (3)
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Table 1: The format of genome data.

Chr Pos Loc Ref Alt Type
1 160952708 rs2250304 C T SNP
1 160952937 rs71090344 GGAGGTTTCAGTGAGCT INS
1 160953538 rs59471747 T INS
1 160953667 rs2988723 G A SNP
1 160955055 . TG CA SUB
1 160955067 . GCA ACG SUB
1 160955085 . CTA TTG SUB
1 160955294 rs6427571 A G SNP
1 160955725 rs2990700 T C SNP
1 160956178 rs3007155 T C SNP
1 160956420 rs3007156 G A SNP
1 160956744 rs2990701 C T SNP
1 160957493 rs3007157 A G SNP
1 160957862 . T INS
1 160957885 rs2483148 A C SNP
1 160958160 rs2481072 G A SNP
1 160958212 . C T SNP
1 160959961 rs7530765 C T SNP
1 160961448 rs11300130 AG DEL

And the ciphertext CT satisfies CT ⋅ (1, s) = 𝑚 ⋅ (1, s, . . . ,
𝐵�푑�푔−1�푔 , 𝐵�푑�푔−1�푔 s) + e. Let Dec�퐵�푔(⋅) denote the decomposition
with the base 𝐵�푔, so 𝑚 can be regarded as an approxi-
mate eigenvalue of Dec�퐵�푔(CT) with the eigenvector (1, s, . . . ,
𝐵�푑�푔−1�푔 , 𝐵�푑�푔−1�푔 s).

Reference [17] defines a hybridmultiplication between an
RLWE ciphertext ct ∈ R2�푄 and an RGSW ciphertext CT ∈
R
2�푑�푔×2

�푄 .

ctH⋅mult = Hybrid.Mult (CT, ct)
= CT�푇 ⋅ Dec (ct) ∈ TLWE (𝑚CT ⋅ 𝑚ct) ∈R

2
�푄.

(4)

Thus the ciphertext ctH⋅mult is a RLWE encryption of
𝑚CT𝑚ct.

3. Encoding and Encryption of Gene Data

Recall the task proposed by iDASH: secure biomarkers
matching of encrypted genetic data, and in this section, we
describe how to encode and encrypt the genomic data.

3.1. Genetic Data. The gene data is stored in a semitrusted
business cloud inVCF format.The database VCF file contains
multiple genotype information entries, where each of them
consists of chrome (chr), position (pos), locus (loc), reference
(ref), alternate (alt), type.The example of database is shown in
Table 1. Chrome represents the chromosome where the gene
is located, and it ranges from 1 to 22, 𝑋, and 𝑌. Position
represents the base position of the gene variation in the
chromosome, and locus indicates the location of the gene.

Reference, alternate, type display the base transformation
information for the variation: reference represents the base
information before the mutation occurs; alternate represents
the base information after the mutation; type indicates the
type of the mutation, including the single base variation
(SNP), multibase mutation (SUB), insertion variation (INS),
and deletion variation (DEL).

In fact, the gene mutation can be located by chr and pos
information only, and the information of base change can be
obtained by comparing the ref base and the alt base. In order
to improve the efficiency of the program, we only match the
chr and pos information between the patient and the cloud,
and then we get the corresponding ref and alt information of
base variation at the same location in the database. Finally the
user compares the base change information from the cloud
and his base change information to get the final match result.

3.2. Encoding and Encryption of Genetic Data. In this section,
we describe how to encode the genomic data so that they
can be applied to homomorphic encryption scheme. Let 𝑑�푖
denote the position information of the 𝑖th entry in the gene
database, 𝛼�푖 the variation information of the 𝑖th entry in the
gene database, 𝛼ref�푖 and 𝛼alt�푖 the integer encodings of reference
genome and alternate genome, respectively.

For the coding of the gene position information, define a
mapping from (chr, pos) to 𝑑�푖:

𝜃 : (Z,Z) → Z (5)

(chrom, pos) → 𝑑�푖 = chrom�푖 + 24 ⋅ pos�푖. (6)

In the following we describe how to encode the base
variation information in [KSC17]. Firstly, they represent the
common SNPs by two binary numbers as
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Figure 2: Coding structure of base variation information.

A → 00
T → 01
G → 10
C → 11

(7)

and encode them according to their order. Then pad with 1
to the left of the bit string so as to distinguish the A-string
and empty string. For instance, the base A will be encoded as
1 | 00 = (100)2 = 4, and string CG will be encoded as 1 |
11 | 10 = (11110)2 = 30. 𝑛SNP denotes the maximal number
of reference (or alternate) alleles to be compared between the
query genome and genomes in the target database; thus the
length of the base string is 𝑙SNP = 2 ⋅ 𝑛SNP +1. And in [KSC17]
the encoding of base variation information is expressed as

𝛼�푖 = 2�푙nsp ⋅ 𝛼ref�푖 + 𝛼alt�푖 . (8)

Our Contribution. The value of 𝑛SNP in [KSC17] is set, respec-
tively, to 2, 5, or 10, but the genovariation that more than 10-
base insertion or deletion may occur actually. For example,
the second entry in Table 1 for column of “alt” genome
is GGAGGTTTCAGT GAGCT. If the patient’s alt genome
(query gene information) is GGAGGTTTCA, the server
will conclude that the patient is more likely to suffer from
a genopathy. At the same time, we found that the numbers
of ref bases and alt bases are usually not symmetrical through
the statistical analysis of the genetic database, and the number
of bases after concatenating the ref and alt genome does not
exceed 20mostly.Therefore, the prefix code is used to encode
the genome data:

Firstly, the SNPs are encoded as

A → 00,
T → 01,
G → 10,
C → 110.

(9)

Then, a string “111” is added to concatenate the ref and alt
genome; this can help us to separate the encoding of ref and
alt genome correctly. Finally, pad with 1 to the left of the bit
string so as to distinguish the A-strings. Here is the formula
of getting 𝛼�푖:

𝛼�푖 = 1 | 𝛼ref�푖 |111| 𝛼alt�푖 , (𝛼�푖 ≤ 244) . (10)

Let 𝑙snp denote the bit size of 𝛼�푖, and set 𝑙snp = 44 so as
to expand the number of gene entries which can be correctly

matched. If the length of 𝛼�푖 is less than 44 bits, then pad bit
0 at the left of the bit string to ensure that the length of the
encoding is 44 bits. For the case of length (𝛼�푖) > 44 bits, 𝛼�푖 is
divided by 44 bits; the details are in Section 3.3.3.

For example, the base variation information of
the second entry in the Table 1 will be encoded as
00001111101000101001010111000100110001011001. And it can be
decoded by the way shown in Figure 2.

After the process of encoding the genetic data, the
database file will be encoded as a set of pairs (𝑑�푖, 𝛼�푖) for𝑖 = 1, 2, . . . , 𝑛. The encoding results of Table 1 are shown in
Table 2.

The HE scheme in this paper is carried out on a poly-
nomial ring, so it is necessary to express the integer pairs as
polynomial DB(𝑋) = ∑�푁�푖=0 𝑐�푖𝑋�푖 ∈R, where

𝑐�푖 = {{{
𝛼�푖, if 𝑖 = 𝑑�푖,
𝛼�푖 ← Z�푡 else. (11)

Since the 𝑑�푖 from VCF files have bits size about 32, set
R ≜ (Z[𝑋]/[𝑋�푁+1]), 𝑁 = 233−1. And then the data owner
(research institute) encrypts the polynomial DB(𝑋) with the
RLWE public-key encryption scheme as described above.

The query genes are also encoded as a pair of integers
(𝑑, 𝛼). However, the hospital or medical institution only
needs to encrypt the monomial 𝑋−�푑 with the RGSW sym-
metric encryption scheme.

3.3. The Optimization of the Encoded Data. Since the 𝑑�푖 from
VCF files have bits size of about 32, setR ≜ (Z[𝑋]/[𝑋�푁+1]),
𝑁 = 233 − 1. While taking into account the safety and
efficiency of HE schemes, a dimension 211 < 𝑁 < 216 is
considered appropriate.

[KSC17]makes use of SHA-3 to transform 𝑑�푖 into a pair of
two nonnegative integers 𝑑∗�푖 and 𝑑†�푖 : Hash(𝑑�푖) → (𝑑∗�푖 , 𝑑†�푖 ),
and both of them have the bit size of 11 bits; then define
ring R ≜ (Z[𝑋]/[𝑋�푁 + 1]), 𝑁 = 11, and mapping Φ :
R�푡 → R�푘×2�푡 DB(𝑋) → (DB∗�푗(𝑋),DB†�푗(𝑋))�푗∈{1,...,�푘}, and
transform polynomial DB(𝑋) into 𝑘 groups of lower-
dimension polynomials DB∗�푗(𝑋) ∈R, DB†�푗(𝑋) ∈R, where

DB∗�푗 (𝑋) =
�푁

∑
�푖=0

𝑐∗�푗,�푑∗�푖 𝑋�푑
∗
�푖 ,

DB†�푗 (𝑋) =
�푁

∑
�푖=0

𝑐†
�푗,�푑†�푖
𝑋�푑†�푖 ,

(12)
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Table 2: Encoding of genetic data.

Chr Pos 𝑑 Ref Alt 𝛼
1 160952708 3862864993 C T 477
1 160952937 3862870489 GGAGGTTTCAGTGAGCT 1074435738713
1 160953538 3862884913 T 61
1 160953667 3862888009 G A 220
1 160955055 3862921321 TG CA 5880
1 160955067 3862921609 GCA ACG 222106
1 160955085 3862922041 CTA TTG 117206
1 160955294 3862927057 A G 158
1 160955725 3862937401 T C 382
1 160956178 3862948273 T C 382
1 160956420 3862954081 G A 220
1 160956744 3862961857 C T 477
1 160957493 3862979833 A G 158
1 160957862 3862988689 T 61
1 160957885 3862989241 A C 318
1 160958160 3862995841 G A 220
1 160958212 3862997089 C T 477
1 160959961 3863039065 C T 477
1 160961448 3863074753 AG 151

and polynomials DB∗�푗 and DB†�푗 satisfy 𝛼�푖 = 𝑐∗�푗,�푑∗�푖 + 𝑐†�푗,�푑†�푖 , for
one 𝑗 ∈ {1, . . . , 𝑘}.

A corresponding mapping 𝜙 is defined as the specific
mapping from a term in a polynomial R�푡 to terms in
polynomialsR2�푡 .

𝜙 :R�푡 →R
2
�푡

𝛼�푖𝑋�푑�푖 → (𝑐∗�푗,�푑∗�푖 𝑋�푑
∗
�푖 , 𝑐†
�푗,�푑†�푖
𝑋�푑†�푖 ) ,

for one 𝑗 ∈ {1, . . . , 𝑘} .
(13)

We found that there are three types of errors in [KSC17],
named hash collision error (HCE), coefficient combination
error (CCE), and losing of partial coefficient error (LPCE). In
the following we will describe these errors and our solutions.

3.3.1. Hash Collision Error. KSC17 made use of SHA-3 to
transform 33-bit-size 𝑑�푖 into a pair of two 11-bit-size integers
𝑑∗�푖 and 𝑑†�푖 in order to improve the efficiency of the scheme.
The hash function maps 33 bits of information to 22 bits,
which may cause the collisions with a probability of 2−22
approximately. This collision will result in a searching error.
Take 10,000 entries in the database as an example, and
suppose that the user queries the position of 𝑑1, where
hash(𝑑1) → (𝑑∗1 , 𝑑†1). The probability of at least one hash col-
lision existing between the query and the database, with the
same 𝑑∗1 and 𝑑†1 , is 1 − (1 − 1/222)10000 > 2−9; that is, the user
might get a wrong result with a probability more than 2−9.

What is more, this error cannot be avoided by repeating the
algorithm.

OurContribution. For theHCEerror, we abandon themethod
of hash function, and decompose the index 𝑑�푖 with the basis
𝑁 = 211, so that 𝑑�푖 can be represented as 𝑑�푖 = 𝑁2 ⋅𝑑∗�푖 +𝑁⋅𝑑†�푖 +𝑑⊥�푖 ; that is, 𝑑�푖 = 𝑑∗�푖 | 𝑑†�푖 | 𝑑⊥�푖 . Then, we extend the mappingΦ
to mapping Ψ

Ψ :R�푡 →R
�푘×3
�푡

DB (𝑋)
→ (DB∗�푗 (𝑋) ,DB†�푗 (𝑋) ,DB⊥�푗 (𝑋))�푗∈{1,...,�푘} ,

(14)

where 𝑘 is the number of polynomial groups, DB∗�푗(𝑋) =
∑�푛�푖=0 𝑐∗�푗,�푑∗�푖 𝑋�푑

∗
�푖 , DB†�푗(𝑋) = ∑�푛�푖=0 𝑐†�푗,�푑†�푖𝑋

�푑†�푖 , DB⊥�푗(𝑋) =
∑�푛�푖=0 𝑐⊥�푗,�푑⊥�푖 𝑋�푑

⊥
�푖 , 𝛼�푖 = 𝑐∗�푗,�푑∗�푖 + 𝑐†

�푗,�푑†�푖
+ 𝑐⊥�푗,�푑⊥�푖 . And extend the

corresponding mapping 𝜙 to mapping 𝜓
𝜓 :R�푡 →R

3
�푡

𝛼�푖𝑋�푑�푖 → (𝑐∗�푗,�푑∗�푖 𝑋�푑
∗
�푖 , 𝑐†
�푗,�푑†�푖
𝑋�푑†�푖 , 𝑐⊥�푗,�푑⊥�푖 𝑋�푑

⊥
�푖 ) ,

for one 𝑗 ∈ {1, . . . , 𝑘} .
(15)

As a result, we can effectively avoid the collision caused by
the compression of the index 𝑑�푖 and solve the HCE problem.

3.3.2. Coefficient Combination Error. In this section, we will
describe how theCCE error is happening. For∀𝑜, 𝑝 ∈ Z�푁, the
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Figure 3: A brief description of CCE error.

CCE error exists because [KSC17] cannot distinguishwhether
two coefficients 𝑐∗�푗,�표 and 𝑐†�푗,�푝, picked, respectively, from
(DB∗�푗(𝑋),DB†�푗(𝑋))�푗∈{1,...,�푘}, belong to the one mapping 𝜙.
This error may lead to the mistake that an entry that is not in
the database was judged in the database.

There is a way to determine whether an integer pair
(𝛼�푖, 𝑑�푖) is in the database. Firstly the integer pair (𝛼�푖, 𝑑�푖) is
employed to represent the polynomial 𝛼�푖𝑋�푑�푖 ; then transform
it into (𝑐∗�푑∗�푖 𝑋�푑

∗
�푖 , 𝑐†
�푑†�푖
𝑋�푑†�푖 ) through mapping 𝜙. If there exists a

certain group (for one 𝑗) (DB∗�푗(𝑋),DB†�푗(𝑋))�푗∈{1,...,�푘} whose
corresponding entries 𝑐∗�푗,�표𝑋�푑∗�푖 , 𝑐†�푗,�푝𝑋�푑†�푖 satisfy 𝑐∗�푗,�표 + 𝑐†�푗,�푝 =
𝛼�푖, then the integer pair (𝛼�푖, 𝑑�푖) is judged in the database;
otherwise the integer pair (𝛼�푖, 𝑑�푖) is not judged in the
database.

We give a brief description in Figure 3.
The first line in Figure 3 represents the polynomial

DB(𝑋) with large dimension, and the second and third lines
represent the polynomials DB∗�푗(𝑋) and DB†�푗(𝑋) with small
dimension. All nonzero coefficients in the polynomials are
labeled with short lines. If patient want to check whether
the query entry (𝑑�푖, 𝛼�푖) = (15, 9) exists in the database with
hash(15) → (1, 5), [KSC17] will give the conclusion that this
entry exists in the database, since the coefficients of 5𝑋1 and
4𝑋5 satisfy 5 + 4 = 9. This will cause the mistake that the
patient was misdiagnosed as sick.

Our Contribution. The CCE error means that the query entry
(𝛼�푖, 𝑑�푖) does not exist in the database, but the scheme gives the
result that the entry is in the database. If the 𝑑�푖 is decomposed
into 𝑑�푖∗, 𝑑�푖†, and 𝑑�푖⊥, this error will happen only if the sum of
the coefficients 𝑐∗�푗,�표 + 𝑐†�푗,�푝 + 𝑐⊥�푗,�푝 of corresponding term 𝑐∗�푗,�표𝑋�푑∗�푖 ,
𝑐†�푗,�푝𝑋�푑†�푖 , 𝑐⊥�푗,�푞𝑋�푑⊥�푖 for one 𝑗 ∈ {1, . . . , 𝑘} is exactly equal to 𝛼�푖.
Since the sum of coefficients 𝑐∗�푗,�표+𝑐†�푗,�푝+𝑐⊥�푗,�푝 ∈ Z�푡 is uniformed,
the probability of 𝑐∗�푗,�표 + 𝑐†�푗,�푝 + 𝑐⊥�푗,�푝 = 𝛼�푖 for a given 𝛼�푖 is 1/𝑡 =
1/(2�푙snp), for one group 𝑗 ∈ {1, . . . , 𝑘}. ThemappingΨ :R�푡 →
R�푘×3�푡 will generate 𝑘 group polynomials, and the probability
of at least one group has a collision with the given query entry
(𝛼�푖, 𝑑�푖) is 1− (1−1/2�푙snp)�푘. Through a similar analysis, we find
that the probability of CCE error in [KSC17] also satisfies this
formula. When [KSC17] gives the parameters 𝑛snp = 5, 𝑙snp =
11, 𝑘 = 100, this probabilitywill be as high as 1−(1−1/2�푙snp)�푘 ≈
2−4.39 > 2−5.

There are two factors we need to consider for the parame-
ter 𝑙snp. Firstly, the size of coefficients needs to bemultiple of 11
bits. Secondly, the size of coefficients needs to be large enough
to decrease the probability of CCE error, and the scheme’s
efficiency should be taken into account. Consequently we set
𝑙snp = 44 to reach the requirement for security and efficiency,
and decrease the probability of CCE error to 2−37.4.

3.3.3. Losing of Partial Coefficient Error. In this section, we
will describe how the error LPCE is happening. [KSC17] sets
𝑙snp = 21 bits, while we found that there are some entries in
the database whose encodings are more than 21 bits, and the
longest one even needs 272 bits to be represented. For those
entries whose encodings are more than 21 bits, [KSC17]
truncates the encoding bit to the left 21 bits and abandonother
bits. The truncation will cause the LPCE problem. In 3.2 we
extend 𝑙snp to 44 bits, but also we cannot meet our needs for
the correct matching.

Our Contribution. In order to solve this problem, we decom-
pose these long encodings by 44 bits, then optimize, encrypt,
and query the components, respectively. Suppose that the
given entry with large coefficient is (𝛼�푖, 𝑑�푖). First, 𝛼�푖 is
decomposed by 44 bits; get a set of smaller components
(𝛼�푖,�표, . . . , 𝛼�푖,1), where 𝛼�푖 = 𝛼�푖,�표 | ⋅ ⋅ ⋅ | 𝛼�푖,1, 𝛼�푖,�푗 ∈ Z�푡. Second,
we construct and output multiple new entries with smaller
coefficients (𝛼�푖,�표, 𝑑�푖), . . . , (𝛼�푖,1, 𝑑�푖). Finally, these entries are
mapped by 𝜓 and optimized separately. As a result, we can
represent and query all entries effectively in the database and
solve the LPCE problem.

4. Secure Searching of Gene Data

Section 4.1 introduces the optimized algorithm for coefficient
and dimension of the DB(𝑋) = ∑232−1�푖=0 𝑐�푖𝑋�푖. Section 4.2
describes the searching algorithm of gene data. Section 4.3
shows our experimental results.

4.1. Optimized Encoding Algorithm of Gene Data

4.1.1. Coefficient Optimization. In order to solve LPCE prob-
lem and get an efficient scheme, it is necessary to optimize the
coefficients of the polynomial DB(𝑋). Set 𝑡 as the minimum
power of 44 bits, which is larger than the bound of 𝛼. We
found that the length of the encoding 𝛼 in the database is no



8 Security and Communication Networks

Input: (𝛼�푖, 𝑑�푖) ∈ Z�푡 × Z233 , 1 ≤ 𝑖 ≤ 𝑛,𝑚 = ⌈𝑡/𝑡⌉.
(1) for 𝑖 ∈ {1, . . . , 𝑛} do
(2) 𝛼�푖 ∈ Z�푡 → (𝛼�푖,�푚, . . . , 𝛼�푖,1) ∈ Z�푚�푡 , where 𝛼�푖 = 𝑡�푚−1 ∙ 𝛼�푖,�푚 + 𝑡�푚−2 ∙ 𝛼�푖,�푚−1 + ⋅ ⋅ ⋅ + 𝛼�푖,1(3) set 𝑜 = 0
(4) for 𝑗 ∈ {𝑚/4, . . . , 1} do
(5) if 𝛼�푖,4�푗 = 0, 𝛼�푖,4�푗−1 = 0, 𝛼�푖,4�푗−2 = 0, 𝛼�푖,4�푗−3 = 0(6) 𝑜 = 𝑜 + 1
(7) else break
(8) output {((𝛼�푖,�푚−4�표, 𝑑�푖), . . . , (𝛼�푖,�푚−4�표−3, 𝑑�푖)) ∈ (Z�푡 × Z233 )4, . . . , ((𝛼�푖,4, 𝑑�푖), . . . , (𝛼�푖,1, 𝑑�푖))}

Algorithm 1: Encoding genomic data: coefficient optimization.

Input: (𝛼�푖,�푙, 𝑑�푖) ∈ Z�푡 × Z233 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑙 ≤ 4,𝑁 = 211.
(1) 𝑑�푖 → (𝑑∗�푖 , 𝑑†�푖 , 𝑑⊥�푖 ) ∈ Z3�푡 , 𝑑�푖 = 𝑁2 ∙ 𝑑∗�푖 + 𝑁1 ∙ 𝑑†�푖 + 𝑑⊥�푖
(2) 𝑐∗1,�푑∗1

�푅← Z�푡, 𝑐†1,�푑†1
�푅← Z�푡, 𝑐⊥1,�푑⊥1 ← 𝛼1,�푗 − 𝑐∗1,�푑∗1 − 𝑐†1,�푑†1 ∈ Z�푡

(3) D∗1 = {},D†1 = {},D⊥1 = {}; 𝑑∗1 ∈ D∗1 , 𝑑†1 ∈ D†1 , 𝑑⊥1 ∈ D⊥1(4) for 𝑖 ∈ {2, . . . , 𝑛} do
(5) for 𝑗 ∈ {1, . . . , 𝑘} do
(6) if 𝑑∗�푖 ∉ D∗�푗 , 𝑑†�푖 ∉ D†�푗 , 𝑑⊥�푖 ∉ D⊥�푗 then
(7) 𝑐∗�푗,�푑∗

�푖

�푅← Z�푡, 𝑐†�푗,�푑†
�푖

�푅← Z�푡, 𝑐⊥�푗,�푑⊥
�푖
← 𝛼�푖,�푙 − 𝑐∗�푗,�푑∗

�푖
− 𝑐†
�푗,�푑†
�푖

∈ Z�푡

(8) else if 𝑑∗�푖 ∈ D∗�푗 , 𝑑†�푖 ∉ D†�푗 , 𝑑⊥�푖 ∉ D⊥�푗 then
(9) 𝑐†

�푗,�푑†
�푖

�푅← Z�푡, 𝑐⊥�푗,�푑⊥
�푖
← 𝛼�푖,�푙 − 𝑐∗�푗,�푑∗

�푖
− 𝑐†
�푗,�푑†
�푖

∈ Z�푡

(10) ⋅ ⋅ ⋅
(11) else if 𝑑∗�푖 ∈ D∗�푗 , 𝑑†�푖 ∈ D†�푗 , 𝑑⊥�푖 ∉ D⊥�푗 then(12) 𝑐⊥�푗,�푑⊥

�푖
← 𝛼�푖,�푙 − 𝑐∗�푗,�푑∗

�푖
− 𝑐†
�푗,�푑†
�푖

∈ Z�푡

(13) ⋅ ⋅ ⋅
(14) else if 𝑑∗�푖 ∈ D∗�푗 , 𝑑†�푖 ∈ D†�푗 , 𝑑⊥�푖 ∈ D⊥�푗 then(15) break
(16) output (𝑐∗�푗 , 𝑐†�푗 , 𝑐⊥�푗 ) ∈R3�푡 , (D∗�푗 ,D†�푗 ,D⊥�푗 ) where 𝑗 ∈ {1, . . . , 𝑘}

Algorithm 2: Encoding genomic data: dimension optimization.

more than 272 bits; thus set 𝑡 = 2308, which is minimum
multiple of 44 bits and larger than 272 bits. We use a general
method to decompose 𝛼�푖 ∈ Z�푡 into (𝛼�푖,�푚, 𝛼�푖,�푚−1, . . . , 𝛼�푖,1) ∈
Z�푚�푡 with the basis 𝑡, where 𝛼�푖 = 𝑡�푚−1 ∙ 𝛼�푖,�푚 + 𝑡�푚−2 ∙ 𝛼�푖,�푚−1 +⋅ ⋅ ⋅ + 𝛼�푖,1, 𝑚 = ⌈𝑡/𝑡⌉. In this paper, we set 𝑡 = 211, and thus
𝑚 = 28. Algorithm 1 presents the coefficient optimization
algorithm.

4.1.2. Dimension Optimization. Since the encoded integers
𝑑�푖 from VCF files have bits size of about 32, while taking
into account the safety and efficiency for implementation of
HE schemes, a dimension 211 < 𝑁 < 216 is considered
appropriate. After decomposing the index 𝑑�푖 into 𝑑∗�푖 , 𝑑†�푖 , and𝑑⊥�푖 , where 𝑑�푖 = 𝑑∗�푖 | 𝑑†�푖 | 𝑑⊥�푖 , we appoint that if the
𝑑∗�푖 , 𝑑†�푖 , and 𝑑⊥�푖 have been decomposed for the previous
index, then rebuild a set of polynomials and reassign their
corresponding coefficients. Here we set the total groups of
DB∗�푗(𝑋), DB†�푗(𝑋), DB⊥�푗(𝑋) to 𝑘whichmeans 𝑗 ∈ {1, . . . , 𝑘}.

Dimension optimization of encoding algorithm is shown as
Algorithm 2.

4.2. Secure Searching Algorithm of Gene Data. This section
gives the general framework and complete process of secure
searching algorithm, showing the process of our secure
testing with details in Figure 4.

4.2.1. Database Encryption. The data owner (research insti-
tute) encodes the genomic information as DB∗(𝑋), DB†(𝑋),
DB⊥(𝑋) and encrypts the polynomials as (ct∗DB, ct†DB, ct⊥DB).
The process is shown in Algorithm 3. Then the research
institute submits the ciphertexts to the commercial cloud
service (server).

4.2.2. Query Encryption. The user (hospital or medical insti-
tution) encodes the query (𝛼, 𝑑) as 𝑋−�푑∗ , 𝑋−�푑† , and 𝑋−�푑⊥ ,
where 𝑑 = 𝑑∗ | 𝑑† | 𝑑⊥. Then the user sends the ciphertexts
CT∗�푄, CT

†
�푄, CT

⊥
�푄 to the server (commercial cloud service):
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Figure 4: The secure testing process for genetic diseases with details.

Input: (𝛼�푖, 𝑑�푖) ∈ Z232 × Z�푚�푡 , 1 ≤ 𝑖 ≤ 𝑛, 𝑘 ∈ Z.
(1) DB�耠 ≜ ((𝛼�푖,4, 𝑑�푖), . . . , (𝛼�푖,1, 𝑑�푖))1≤�푖≤�푛 ← Algorithm 1 ((𝛼�푖, 𝑑�푖)1≤�푖≤�푛)(2) (DB∗�푙,�푗,DB†�푙,�푗,DB⊥�푙,�푗)�푙∈{1,...,4},�푗∈{1,...,�푘} ≜ (𝑐∗�푙,�푗, 𝑐†�푙,�푗, 𝑐⊥�푙,�푗)�푙∈{1,...,4},�푗∈{1,...,�푘} ← Algorithm 2 (DB�耠)
(3) for 𝑙 ∈ {1, . . . , 4} do
(4) for 𝑗 ∈ {1, . . . , 𝑘} do

𝑐𝑡∗DB�푙,�푗 = RLWE.Enc(DB∗�푙,�푗(𝑋), 𝑝𝑘);
𝑐𝑡†DB�푙,�푗 = RLWE.Enc(DB†�푙,�푗(𝑋), 𝑝𝑘);𝑐𝑡⊥DB�푙,�푗 = RLWE.Enc(DB⊥�푙,�푗(𝑋), 𝑝𝑘).

(5) output (𝑐𝑡∗DB, 𝑐𝑡†DB, 𝑐𝑡⊥DB) = (𝑐𝑡∗DB�푙,�푗 , 𝑐𝑡†DB�푙,�푗 , 𝑐𝑡⊥DB�푙,�푗 )�푙∈{1,...,4},�푗∈{1,...,�푘}

Algorithm 3: Database encoding and encryption.

CT∗�푄 = RGSW.Enc (𝑋−�푑∗ , pk) ,

CT†�푄 = RGSW.Enc (𝑋−�푑† , pk) ,
CT⊥�푄 = RGSW.Enc (𝑋−�푑⊥ , pk) .

(16)

4.2.3. Evaluation Phase. Theserver computes the hybridmul-
tiplications ct∗mult, ct

†
mult, and ct⊥mult between the ciphertext of

genetic database and the query. Let ct = ct∗mult+ct†mult+ct⊥mult.
The server converts it into an LWE ciphertext and performs
Modulus Switching operations. Then return the resulting
ciphertext ctres to the user.
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Figure 5: Time of secure searching of biomarkers.

ct∗mult ← CT∗�푄 ⊡ ct∗DB,
ct†mult ← CT†�푄 ⊡ ct†DB,
ct⊥mult ← CT⊥�푄 ⊡ ct⊥DB ∈R

2
�푄,

ct = RLWE.Add (ct∗DB, ct†DB, ct⊥DB) ∈R
2
�푄,

ctconv ∈ Z
�푁+1
�푄 ← RLWE.Conv (ctmult ∈R

2
�푄) ,

ctres ∈ Z
�푁+1
�푞 ← LWE.ModSwitch (ctconv ∈ Z

�푁+1
�푄 ) .

(17)

4.2.4. Decryption Phase. The user decrypts the ciphertext
ctres with the secret key and gets the value 𝛼�耠 corresponding
to the target position 𝑑 in the database.

𝛼�耠 ← LWE.Dec (ctres ∈ Z
�푁+1
�푞 , sk ∈ {−1, 0, 1}�푁+1) . (18)

4.3. Implementation of Secure Searching. In fully homomor-
phic encryption scheme, the homomorphic operations are
usually achieved by the polynomial additions and polyno-
mial multiplications as well as bootstrapping processes. As
bootstrapping involves costly homomorphic decryption
operations, and homomorphic decryption operation requires
larger ciphertext modules to prevent decryption errors, this
leads to inefficiencies of fully homomorphic encryption. The
encryption scheme in this paper is a lattice-based somewhat
homomorphic encryption scheme. As few homomorphic
operations and no bootstrapping processes are involved in
our scheme, a smaller module can ensure the correctness of
the scheme. Therefore, the scheme succeeds the efficiency of
the [KSC17] scheme. For a 10K database, only hundreds of
multiplications and additions of polynomials are needed for
the commercial cloud server, so the test results can quickly
return. Details are provided in the evaluation phase of
Section 4.2.

According to the application scenario of our scheme,
we have implemented a three-party (hospital institution,
commercial cloud service, and research institute) interactive
experimental platform and done experiments on databases

Table 3: Time of secure searching of biomarkers (ms).

DB size
(number of entries) Query-Enc DB-Enc Eval Dec

428 22 25 128 1
10K 21 124 634 1
100K 20 857 3247 1

Table 4: Storage of secure searching of biomarkers (MB).

DB size
(number of entries) Query DB Result

428 160KB 4 1
10K 160KB 23 5.6
100K 160KB 99 24.7

of different sizes (database with 428 entries, 10k entries, 100k
entries). We implemented our scheme on a 64-bit single core
(i7-6700HQ) at 2.60GHz, with OS Win 7. The experimental
data are listed in Tables 3 and 4, and they are shown in Figures
5 and 6. The source code of our implementation is available
on github https://github.com/lonyliu/genetest.

Experimental results show that our scheme supports
secure searching of gene data for all entries in the genome
database (compared to about 5‰ incorrect searching for gene
data in [KSC17]). What is more, based on guaranteeing high
efficiency for secure searching of gene data, our scheme
reduces the probability of searching error to less than 2−37.4.

5. Conclusion

In this paper, we discussed how to privately perform secure
genomic searching on a semitrusted business cloud with
homomorphic encryption. Our scheme can support secure
searching of multibase mutation for arbitrary length. What is
more, we have solved three errors, hash collision error (HCE),

https://github.com/lonyliu/genetest
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Figure 6: Storage of secure searching of biomarkers.

coefficient combination error (CCE), and losing of partial
coefficient error (LPCE), in [KSC17].

Analysis and experimental results show that our scheme
can search all the entries in database, compared to about
5‰ incorrect searching for gene data in [KSC17], and the
probability of searching error is reduced to less than 2−37.4;
thus our scheme can solve the problem of secure searching of
gene data based on better homomorphic encryption. We
will further study how to eliminate the impact of database
capacity on communication traffic in future work.
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