3,821 research outputs found

    Effective Low Frequency Noise Insulation Adopting Active Damping Approaches

    Get PDF
    In this chapter, effective low frequency noise insulation adopting active damping approaches are illustrated. In general, engineering plate structures suffer insufficient noise insulation performance in the low frequency band. To improve the structure’s noise insulation performance, active damping methods can be utilized, which aim to suppress plate structure’s efficient sound radiation modes. The collocated sensor/actuator configuration guarantees the control system’s robustness, and simplifies the control law design. In the presented study, two control laws are proposed to add active damping to the structure. One control law is negative acceleration feedback (NAF) control and the other control law is filtered velocity feedback (FVF) control. The NAF control is suitable to control one specific mode and the FVF control is suitable to realize wide band vibration control. With respect to practical implementation, a carbon fiber reinforced plastic (CFRP) plate is served as the control target and active control laws are implemented on it. Experimental system for active control is presented in detail, and some practical advises are given to help readers to solve similar problems in a convenient way. The measured sound pressure and vibration results show effectiveness of the active damping treatment

    Unextendible Maximally Entangled Bases in Cpd⊗Cqd\mathbb{C}^{pd}\otimes \mathbb{C}^{qd}

    Full text link
    The construction of unextendible maximally entangled bases is tightly related to quantum information processing like local state discrimination. We put forward two constructions of UMEBs in Cpd⊗Cqd\mathbb {C}^{pd}\otimes \mathbb {C}^{qd}(p≤qp\leq q) based on the constructions of UMEBs in Cd⊗Cd\mathbb {C}^{d}\otimes \mathbb {C}^{d} and in Cp⊗Cq\mathbb {C}^{p}\otimes \mathbb {C}^{q}, which generalizes the results in [Phys. Rev. A. 94, 052302 (2016)] by two approaches. Two different 48-member UMEBs in C6⊗C9\mathbb {C}^{6}\otimes \mathbb {C}^{9} have been constructed in detail

    Central engine afterglow of Gamma-ray Bursts

    Full text link
    Before 2004, nearly all GRB afterglow data could be understood in the context of the external shocks model. This situation has changed in the past two years, when it became clear that some afterglow components should be attributed to the activity of the central engine; i.e., the {\it central engine afterglow}. We review here the afterglow emission that is directly related to the GRB central engine. Such an interpretation proposed by Katz, Piran & Sari, peculiar in pre-{\it Swift} era, has become generally accepted now.Comment: 4 pages including 1 figure. Presented at the conference "Astrophysics of Compact Objects" (July 1-7, 2007; Huangshan, China
    • …
    corecore