7,994 research outputs found

    Linear temporal stability analysis on the inviscid sheared convective boundary layer flow

    Get PDF
    A linear temporal stability analysis is conducted for inviscid sheared convective boundary layer flow, in which the sheared instability with stable stratification coexists with and caps over the thermal instability with unstable stratification. The classic Taylor–Goldstein equation is applied with different stratification factors Js and Jb in the Brunt–Väisälä frequency, respectively. Two shear-thermal hybrid instabilities, the hybrid shear stratified (HSS) and hybrid Rayleigh–Bénard (HRB) modes, are obtained by solving the eigenvalue problems. It is found that the temporal growth rates of the HSS and HRB modes vary differently with increased Jb in two distinct wavenumber (~a) regions defined by the intersection point between the stability boundaries of the HSS and HRB modes. Based on Jb,cr where the temporal growth rate of the HSS and HRB are equal, a map of the unique critical boundary, which separates the effective regions of the HSS and HRB modes, is constructed and found to be dependent on Js, Jb, and ~a. The examinations of the subordinate eigenfunctions indicate that the shear instability is well developed in the HSS mode, in which the large vortex structures may prevail and suppress the formation of convective rolls; the shear instability in the HRB mode is either “partly developed” when Jb Jb,cr , thus only plays a secondary role to modify the dominant convective rolls, and as Jb increases, the eigenfunctions of the HSS mode exhibit different transitional behaviors in the two regions, signifying the “shear enhancement” and “shear sheltering” of the entrainment of buoyancy flux

    Towards Ultra-High Performance and Energy Efficiency of Deep Learning Systems: An Algorithm-Hardware Co-Optimization Framework

    Full text link
    Hardware accelerations of deep learning systems have been extensively investigated in industry and academia. The aim of this paper is to achieve ultra-high energy efficiency and performance for hardware implementations of deep neural networks (DNNs). An algorithm-hardware co-optimization framework is developed, which is applicable to different DNN types, sizes, and application scenarios. The algorithm part adopts the general block-circulant matrices to achieve a fine-grained tradeoff between accuracy and compression ratio. It applies to both fully-connected and convolutional layers and contains a mathematically rigorous proof of the effectiveness of the method. The proposed algorithm reduces computational complexity per layer from O(n2n^2) to O(nlog⁥nn\log n) and storage complexity from O(n2n^2) to O(nn), both for training and inference. The hardware part consists of highly efficient Field Programmable Gate Array (FPGA)-based implementations using effective reconfiguration, batch processing, deep pipelining, resource re-using, and hierarchical control. Experimental results demonstrate that the proposed framework achieves at least 152X speedup and 71X energy efficiency gain compared with IBM TrueNorth processor under the same test accuracy. It achieves at least 31X energy efficiency gain compared with the reference FPGA-based work.Comment: 6 figures, AAAI Conference on Artificial Intelligence, 201

    Photonic crystal fiber half-taper probe based refractometer

    Get PDF
    A compact singlemode - photonic crystal fiber - singlemode fiber tip (SPST) refractive index sensor is demonstrated in this paper. A CO2 laser cleaving technique is utilised to provide a clean-cut fiber tip which is then coated by a layer of gold to increase reflection. An average sensitivity of 39.1 nm/RIU and a resolvable index change of 2.56 x 10-4 are obtained experimentally with a ~3.2 Âľm diameter SPST. The temperature dependence of this fiber optic sensor probe is presented. The proposed SPST refractometer is also significantly less sensitive to temperature and an experimental demonstration of this reduced sensitivity is presented in the paper. Because of its compactness, ease of fabrication, linear response, low temperature dependency, easy connectivity to other fiberized optical components and low cost, this refractometer could find various applications in chemical and biological sensing

    Binge Alcohol Exposure Causes Neurobehavioral Deficits and GSK3β Activation in the Hippocampus of Adolescent Rats

    Get PDF
    Heavy alcohol exposure causes profound damage to the adolescent brain, particularly the hippocampus, which underlie some behavioral deficits. However, the underlying molecular mechanisms remain inconclusive. The current study sought to determine whether binge alcohol exposure affects the hippocampus-related behaviors and key signaling proteins that may mediate alcohol neurotoxicity in adolescent rats. Alcohol exposure reduced the number of both NeuN-positive and doublecortin-positive cells in the hippocampus. Alcohol also induced neurodegeneration which was confirmed by ultrastructural analysis by electronic microscopy and was accompanied with the activation of microglia. Binge alcohol exposure impaired spatial learning and memory which was evaluated by the Morris water maze. However, alcohol did not alter the spontaneous locomotor activity which was determined by the open field test. GSK3β is a multi-function serine/threonine protein kinase regulating both neuronal survival and neurogenesis and plays an important role in various neurodegenerative disorders. We have previously shown that GSK3β is a key mediator of alcohol-induced neuron apoptosis in the developing brain. We showed here binge alcohol exposure caused GSK3β activation by inducing dephosphorylation at Ser9 without affecting the phosphorylation of Tyr216 in the hippocampus. Thus, GSK3β may be involved in binge alcohol exposure-induced neuronal damage to the adolescent hippocampus
    • …
    corecore