34,233 research outputs found

    The short-time behavior of kinetic spherical model with long-ranged interactions

    Full text link
    The kinetic spherical model with long-ranged interactions and an arbitrary initial order m_{0} quenched from a very high temperature to T < T_{c} is solved. In the short-time regime, the bulk order increases with a power law in both the critical and phase-ordering dynamics. To the latter dynamics, a power law for the relative order m_{r} ~ -t^{-k} is found in the intermediate time-regime. The short-time scaling relation of small m_{0} are generalized to an arbitrary m_{0} and all the time larger than t_{mic}. The characteristic functions ϕ(b,m0)\phi (b,m_{0}) for the scaling of m_{0} and ϵ(b,T′)\epsilon (b,T') for T'=T/T_{c} are obtained. The crossover between scaling regimes is discussed in detail.Comment: 22 pages, 3 figure

    Experimentally reducing the quantum measurement back-action in work distributions by a collective measurement

    Full text link
    In quantum thermodynamics, the standard approach to estimate work fluctuations in unitary processes is based on two projective measurements, one performed at the beginning of the process and one at the end. The first measurement destroys any initial coherence in the energy basis, thus preventing later interference effects. In order to decrease this back-action, a scheme based on collective measurements has been proposed in~[PRL 118, 070601 (2017)]. Here, we report its experimental implementation in an optical system. The experiment consists of a deterministic collective measurement on identically prepared two qubits, encoded in the polarisation and path degree of a single photon. The standard two projective measurement approach is also experimentally realized for comparison. Our results show the potential of collective schemes to decrease the back-action of projective measurements, and capture subtle effects arising from quantum coherence.Comment: 9 pages, 4 figure

    Hunting for Heavy Majorana Neutrinos with Lepton Number Violating Signatures at LHC

    Full text link
    The neutrinophilic two-Higgs-doublet model (ν\nu2HDM) provides a natural way to generate tiny neutrino mass from interactions with the new doublet scalar Φν\Phi_\nu (H±, H, AH^\pm,~H,~A) and singlet neutrinos NRN_R of TeV scale. In this paper, we perform detailed simulations for the lepton number violating (LNV) signatures at LHC arising from cascade decays of the new scalars and neutrinos with the mass order mNR<mΦνm_{N_R}<m_{\Phi_\nu}. Under constraints from lepton flavor violating processes and direct collider searches, their decay properties are explored and lead to three types of LNV signatures: 2ℓ±4j+ET2\ell^\pm 4j+\cancel{E}_T, 3ℓ±4j+ET3\ell^\pm 4j+\cancel{E}_T, and 3ℓ±ℓ∓4j3\ell^\pm\ell^\mp 4j. We find that the same-sign trilepton signature 3ℓ±4j+ET3\ell^\pm4j+\cancel{E}_T is quite unique and is the most promising discovery channel at the high-luminosity LHC. Our analysis also yields the 95%95\% C.L. exclusion limits in the plane of the Φν\Phi_\nu and NRN_R masses at 13 (14) TeV LHC with an integrated luminosity of 100~(3000)/fb.Comment: 31 pages, 17 figures, 6 tables; v2: added a few refs and updated one ref, without other change

    Cancellation of divergences in unitary gauge calculation of H→γγH \to \gamma \gamma process via one W loop, and application

    Full text link
    Following the thread of R. Gastmans, S. L. Wu and T. T. Wu, the calculation in the unitary gauge for the H→γγH \to \gamma \gamma process via one W loop is repeated, without the specific choice of the independent integrated loop momentum at the beginning. We start from the 'original' definition of each Feynman diagram, and show that the 4-momentum conservation and the Ward identity of the W-W-photon vertex can guarantee the cancellation of all terms among the Feynman diagrams which are to be integrated to give divergences higher than logarithmic. The remaining terms are to the most logarithmically divergent, hence is independent from the set of integrated loop momentum. This way of doing calculation is applied to H→γZH \to \gamma Z process via one W loop in the unitary gauge, the divergences proportional to MZ2/M3M_Z^2/M^3 including quadratic ones are all cancelled, and terms proportional to MZ2/M3M_Z^2/M^3 are shown to be zero. The way of dealing with the quadratic divergences proportional to MZ2/M3M_Z^2/M^3 in H→γZH \to \gamma Z has subtle implication on the employment on the Feynman rules especially when those rules can lead to high level divergences. So calculation without integration on all the δ\delta functions until have to is a more proper or maybe necessary way of the employment of the Feynman rules.Comment: 1 figure, 34 pages (updated

    The Electromagnetic Decays of Bc±(2S)B^{\pm}_c(2S)

    Full text link
    We calculate the electromagnetic (EM) decay widths of the Bc±(2S)B^{\pm}_c(2S) meson, which is observed recently by the ATLAS Collaboration. The main EM decay channels of this particle are 13S1γ1{^3S_1}\gamma and 1Pγ1{P}\gamma, which, in literature, are estimated to have the branching ratio of about 1/101/10. In this work, we get the partial decay widths: Γ(21S0→13S1γ)=0.192\Gamma(2{^1S_0}\rightarrow 1{^3S_1}\gamma)=0.192 keV, Γ(21S0→1P1γ)=2.24\Gamma(2{^1S_0}\rightarrow 1{P_1}\gamma) = 2.24 keV and Γ(21S0→1P1′γ)=11.4\Gamma(2{^1S_0}\rightarrow 1{P_1^\prime}\gamma) = 11.4 keV. In the calculation, the instantaneous approximated Bethe-Salpeter method is used. For the PP-wave BcB_c mesons, the wave functions are given by mixing the 3P1^3P_1 and 1P1^1P_1 states. Within the Mandelstam formalism, the decay amplitude is given, which includes the relativistic corrections.Comment: 9 pages, 3 figures, 3 table
    • …
    corecore