4,146 research outputs found

    Effects of Ox-LDL on Macrophages NAD(P)H Autofluorescence Changes by Two-photon Microscopy

    Get PDF
    Ox-LDL uptakes by macrophage play a critical role in the happening of atherosclerosis. Because of its low damage on observed cells and better signal-to- background ratio, two-photon excitation fluorescence microscopy is used to observe NAD(P)H autofluorescence of macrophage under difference cultured conditions- bare cover glass, coated with fibronectin or poly-D-lysine. The results show that the optimal condition is fibronectin coated surface, on which, macrophages profile can be clearly identified on NAD(P)H autofluorescence images collected by two-photon microscopy. Moreover, different morphology and intensities of autofluorescence under different conditions were observed as well. In the future, effects of ox-LDL on macrophages will be investigated by purposed system to research etiology of atherosclerosis.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Integrated nanophotonic hubs based on ZnO-Tb(OH)3/SiO2 nanocomposites

    Get PDF
    Optical integration is essential for practical application, but it remains unexplored for nanoscale devices. A newly designed nanocomposite based on ZnO semiconductor nanowires and Tb(OH)3/SiO2 core/shell nanospheres has been synthesized and studied. The unique sea urchin-type morphology, bright and sharply visible emission bands of lanthanide, and large aspect ratio of ZnO crystalline nanotips make this novel composite an excellent signal receiver, waveguide, and emitter. The multifunctional composite of ZnO nanotips and Tb(OH)3/SiO2 nanoparticles therefore can serve as an integrated nanophotonics hub. Moreover, the composite of ZnO nanotips deposited on a Tb(OH)3/SiO2 photonic crystal can act as a directional light fountain, in which the confined radiation from Tb ions inside the photonic crystal can be well guided and escape through the ZnO nanotips. Therefore, the output emission arising from Tb ions is truly directional, and its intensity can be greatly enhanced. With highly enhanced lasing emissions in ZnO-Tb(OH)3/SiO2 as well as SnO2-Tb(OH)3/SiO2 nanocomposites, we demonstrate that our approach is extremely beneficial for the creation of low threshold and high-power nanolaser

    Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum Computer

    Full text link
    In recent years, due to its formidable potential in computational theory, quantum computing has become a very popular research topic. However, the implementation of practical quantum algorithms, which hold the potential to solve real-world problems, is often hindered by the significant error rates associated with quantum gates and the limited availability of qubits. In this study, we propose a practical approach to simulate the dynamics of an open quantum system on a noisy computer, which encompasses general and valuable characteristics. Notably, our method leverages gate noises on the IBM-Q real device, enabling us to perform calculations using only two qubits. The results generated by our method performed on IBM-Q Jakarta aligned with the those calculated by hierarchical equations of motion (HEOM), which is a classical numerically-exact method, while our simulation method runs with a much better computing complexity. In the last, to deal with the increasing depth of quantum circuits when doing Trotter expansion, we introduced the transfer tensor method(TTM) to extend our short-term dynamics simulation. Based on quantum simulator, we show the extending ability of TTM, which allows us to get a longer simulation using a relatively short quantum circuits

    Formulation of novel lipid-coated magnetic nanoparticles as the probe for in vivo imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Application of superparamagnetic iron oxide nanoparticles (SPIOs) as the contrast agent has improved the quality of magnetic resonance (MR) imaging. Low efficiency of loading the commercially available iron oxide nanoparticles into cells and the cytotoxicity of previously formulated complexes limit their usage as the image probe. Here, we formulated new cationic lipid nanoparticles containing SPIOs feasible for <it>in vivo </it>imaging.</p> <p>Methods</p> <p>Hydrophobic SPIOs were incorporated into cationic lipid 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and polyethylene-glycol-2000-1,2-distearyl-3-sn-phosphatidylethanolamine (PEG-DSPE) based micelles by self-assembly procedure to form lipid-coated SPIOs (L-SPIOs). Trace amount of Rhodamine-dioleoyl-phosphatidylethanolamine (Rhodamine-DOPE) was added as a fluorescent indicator. Particle size and zeta potential of L-SPIOs were determined by Dynamic Light Scattering (DLS) and Laser Doppler Velocimetry (LDV), respectively. HeLa, PC-3 and Neuro-2a cells were tested for loading efficiency and cytotoxicity of L-SPIOs using fluorescent microscopy, Prussian blue staining and flow cytometry. L-SPIO-loaded CT-26 cells were tested for <it>in vivo </it>MR imaging.</p> <p>Results</p> <p>The novel formulation generates L-SPIOs particle with the average size of 46 nm. We showed efficient cellular uptake of these L-SPIOs with cationic surface charge into HeLa, PC-3 and Neuro-2a cells. The L-SPIO-loaded cells exhibited similar growth potential as compared to unloaded cells, and could be sorted by a magnet stand over ten-day duration. Furthermore, when SPIO-loaded CT-26 tumor cells were injected into Balb/c mice, the growth status of these tumor cells could be monitored using optical and MR images.</p> <p>Conclusion</p> <p>We have developed a novel cationic lipid-based nanoparticle of SPIOs with high loading efficiency, low cytotoxicity and long-term imaging signals. The results suggested these newly formulated non-toxic lipid-coated magnetic nanoparticles as a versatile image probe for cell tracking.</p

    The use of multiple molecular markers as predictors of the clinical prognosis of patients with colorectal cancer

    Get PDF
    AbstractSerum carcinoembryonic antigen (CEA) is most commonly used as a prognostic biomarker for evaluating curatively resected colorectal cancer (CRC) patients, but it has a low sensitivity and specificity. The aim of this study was to evaluate potential genetic markers in CRC patients using membrane array. Fifty CRC patients were enrolled and mRNA expression in their tissues were analyzed using membrane array analysis. Seven genes were analyzed in this study, including ATP2A2, GLUT1, MMP13, MAGE-A2, MAGE-A7, MAGE-A8, and MAGE-A12. Correlations between the results of the membrane array and the clinicopathological features of these CRC patients were then evaluated. The results show that the overexpression of any three or four of these seven genes is correlated with tumor invasion depth, lymphatic invasion, advanced stage, and postoperative recurrence (all p < 0.005). Furthermore, the expression of any four genes was more significantly correlated with clinicopathological characteristics than the expression of only two or three genes. The combination of multiple molecular markers and the membrane array method might be useful for predicting postoperative relapse in CRC patients
    corecore