8 research outputs found

    Low social status decreases the neural salience of unfairness

    No full text
    Social hierarchy exists in almost all social species and affects everything from resource allocation to the development of intelligence. Previous studies showed that status within a social hierarchy influences the perceived fairness of income allocation. However, the effect of one’s social status on economic decisions is far from clear, as are the neural processes underlying these decisions. In this study, we dynamically manipulated participants’ social status and analyzed their behavior as recipients in the ultimatum game, during which event-related potentials (ERPs) were recorded. Behavioral results showed that acceptance rates for offers increased with the fairness level of offers. Importantly, participants were less likely to accept unfair offers when they were endowed with high status than with low status. In addition, cues indicating low status elicited a more positive P2 than cues indicating high status in an earlier time window (170 – 240 ms), and cues indicating high status elicited a more negative N400 than did cues indicating low status in a later time window (350 – 520 ms). During the actual reception of offers, the late positivity potential (LPP, 400 – 700 ms) for unfair offers was more positive in the high status condition than in the low status condition, suggesting a decreased arousal for unfair offers during low status. These findings suggest a strong role of social status in modulating individual behavioral and neural responses to fairness

    Game theory paradigm: a new tool for investigating social dysfunction in major depressive disorders

    No full text
    Social dysfunction is a prominent source of distress and disability in patients with major depressive disorder (MDD) but is commonly omitted from current clinical studies, although some researchers propose an evolutionary strategy to understand these negative outcomes. Limited knowledge about the neural basis of social dysfunction in MDD results from traditional paradigms, which lack insights into social interactions. Game theoretical modelling offers a new tool for investigating social interaction impairments in neuropsychiatric disorders. This review first introduces three widely-used games from game theory and the major behavioral and neuroimaging findings obtained using these games in healthy populations. We also address the factors that modulate behaviors in games and their neural bases. We then summarize the current findings obtained by using these games in depressed patients and discuss the clinical implications of these abnormal game behaviors. Finally, we briefly discuss future prospects that may further elucidate the clinical use of a game theory paradigm in MDD

    Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis

    Get PDF
    Histone H3 lysine 4 trimethylation (H3K4me3) has been shown to be involved in stress-responsive gene expression and gene priming in plants. However, the role of H3K4me3 resetting in the processes is not clear. In this work we studied the expression and function of Arabidopsis H3K4 demethylase gene JMJ15. We show that the expression of JMJ15 was relatively low and was limited to a number of tissues during vegetative growth but was higher in young floral organs. Over-expression of the gene in gain-of-function mutants reduced the plant height with accumulation of lignin in stems, while the loss-of-function mutation did not produce any visible phenotype. The gain-of-function mutants showed enhanced salt tolerance, whereas the loss-of-function mutant was more sensitive to salt compared to the wild type. Transcriptomic analysis revealed that over-expression of JMJ15 down-regulated many genes which are preferentially marked by H3K4me3 and H3K4me2. Many of the down-regulated genes encode transcription regulators involved in stress responses. The data suggest that increased JMJ15 levels may regulate the gene expression program that enhances stress tolerance

    Organogel nanoemulsion containing Nisin and D-limonene and its antimicrobial activity

    Get PDF
    The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low surfactant to oil ratio. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by MICs comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents’ release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food

    Activated regulatory T cell regulates neural stem cell proliferation in the subventricular zone of normal and ischemic mouse brain through interleukin 10

    Get PDF
    Recent studies have demonstrated that the depletion of Regulatory T cells (Tregs) inhibits neural progenitor cell migration after brain ischemia. However, whether Tregs affect neural stem/progenitor cell proliferation is unclear. We explored the effect of Tregs on neurogenesis in the subventricular zone after ischemia. Tregs were isolated and activated in vitro. Adult male C57BL/6 mice underwent 60 minutes transient middle cerebral artery occlusion (tMCAO). Then Tregs (1x105) were injected into the left lateral ventricle of normal and ischemic mouse brain. Neurogenesis was determined by immunostaining. The mechanism was examined by inhibiting interleukin 10 (IL-10) and transforming growth factor (TGF-) signaling. We found that the number of BrdU+ cells in the subventricular zone was significantly increased in the activated Tregs-treated mice. Double immunostaining showed that these BrdU+ cells expressed Mash1. Blocking IL-10 reduced the number of Mash1+/BrdU+ cells, but increased the amount of GFAP+/BrdU+ cells. Here we conclude that activated Tregs enhanced neural stem cell proliferation in the subventricular zone of normal and ischemic mice; blockage of IL-10 abolished Tregs-mediated neural stem cell proliferation in vivo and in vitro. Our results suggest that activated Tregs promoted neural stem cell proliferation via IL-10, which provides a new therapeutic approach for ischemic stroke

    Resting-state coupling between core regions within the central-executive and salience networks contributes to working memory performance

    No full text
    Previous studies investigated the distinct roles played by different cognitive regions and suggested that the patterns of connectivity of these regions are associated with working memory. However, the specific causal mechanism through which the neuronal circuits that involve these brain regions contribute to working memory is still unclear. Here, in a large sample of healthy young adults, we first identified the core working memory regions by linking working memory accuracy to resting-state functional connectivity with the bilateral dorsolateral prefrontal cortex (a principal region in the central-executive network). Then a spectral dynamic causal modeling analysis was performed to quantify the effective connectivity between these regions. Finally, the effective connectivity was correlated with working memory accuracy to characterize the relationship between these connections and working memory performance. We found that the functional connections between the bilateral dorsolateral prefrontal cortex and the dorsal anterior cingulate cortex and between the right dorsolateral prefrontal cortex and the left orbital fronto-insular cortex were correlated with working memory accuracy. Furthermore, the effective connectivity from the dorsal anterior cingulate cortex to the bilateral dorsolateral prefrontal cortex and from the right dorsolateral prefrontal cortex to the left orbital fronto-insular cortex could predict individual differences in working memory. Because the dorsal anterior cingulate cortex and orbital fronto-insular cortex are core regions of the salience network, we inferred that the inter- and causal-connectivity between core regions within the central-executive and salience networks is functionally relevant for working memory performance. In summary, the current study identified the dorsolateral prefrontal cortex-related resting-state effective connectivity underlying working memory and suggests that individual differences in cognitive ability could be characterized by resting-state effective connectivity

    Metagenomics reveals pervasive bacterial populations and reduced community diversity across the Alaska tundra ecosystem

    Get PDF
    How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 grams) are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth) by sequencing, and the recovery of twenty-seven high-quality, almost complete (>80% completeness) population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart) tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity). Collectively, our results revealed that Alaska tundra microbial communities are less diverse and more homogenous across spatial scales than previously anticipated, and provided DNA sequences of abundant populations and genes that would be relevant for future studies of the effects of environmental change on tundra ecosystems
    corecore