4 research outputs found

    Linkages among fluorescent dissolved organic matter, dissolved amino acids and lignin-derived phenols in a river-influenced ocean margin

    Get PDF
    Excitation emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) is commonly used to investigate the dynamics of dissolved organic matter (DOM). However, a lack of direct comparisons with known biomolecules makes it difficult to substantiate the molecular composition of specific fluorescent components. Here, coincident surface-water measurements of EEMs, dissolved lignin, and total dissolved amino acids (TDAA) acquired in the northern Gulf of Mexico were used to investigate the relationships between specific fluorescent components and DOM biomolecules. Two terrestrial humic-like components identified by EEM-PARAFAC using samples obtained from river to offshore waters were strongly linearly correlated with dissolved lignin concentrations. In addition, changes in terrestrial humic-like abundance were correlated with those in lignin phenol composition, suggesting such components are largely derived from lignin and its alteration products. By applying EEM-PARAFAC to offshore samples, two protein-like components were obtained. The tryptophan-like component was strongly correlated with TDAA concentrations, corroborating the suggested protein/peptide origin of this component. The ratios of tryptophan-like component to tyrosine-like component or dissolved organic carbon (DOC) concentrations were also correlated with DOC-normalized yields of TDAA, suggesting these proxies are useful indicators of the bioavailability of DOM in marine waters of the studied ecosystem

    The attenuation of retinal nerve fiber layer thickness and cognitive deterioration

    Get PDF
    Thinner retinal nerve fiber layer (RNFL) has been reported in Alzheimer鈥檚 disease patient. However, whether changes in RNFL thickness can predict the cognitive deterioration remains unknown. We therefore set out a prospective clinical investigation to determine the potential association between the attenuation of RNFL thickness and the deterioration of cognitive function over a period of 25 months. We assessed cognitive function using the Repeatable Battery for the Assessment of Neuropsychological Status and measured RNFL thickness employing optical coherence tomography in 78 participants (mean age 72.31 ± 3.98 years, 52% men). The participants were categorized as stable participants whose cognitive status remained no change (N = 60) and converted participants whose cognitive status deteriorated (N = 18). We found that there was an association between the attenuation of superior quadrant RNFL thickness and the deterioration of cognitive function in the stable participants. In the converted participants, however, there was an inverse association between the reduction of inferior quadrant RNFL thickness and decline of cognitive functions [scores of list recall (R = -0.670, P = 0.002), adj. (R = -0.493, P = 0.031)]. These data showed that less reduction in the inferior quadrant of RNFL thickness might indicate a higher risk for the patients to develop cognitive deterioration. These findings have established a system to embark a larger scale study to further test whether changes in RNFL thickness can serve as a biomarker of Alzheimer鈥檚 disease, and would lead to mechanistic studies to determine the cellular mechanisms of cognitive deterioration

    Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis

    Get PDF
    Histone H3 lysine 4 trimethylation (H3K4me3) has been shown to be involved in stress-responsive gene expression and gene priming in plants. However, the role of H3K4me3 resetting in the processes is not clear. In this work we studied the expression and function of Arabidopsis H3K4 demethylase gene JMJ15. We show that the expression of JMJ15 was relatively low and was limited to a number of tissues during vegetative growth but was higher in young floral organs. Over-expression of the gene in gain-of-function mutants reduced the plant height with accumulation of lignin in stems, while the loss-of-function mutation did not produce any visible phenotype. The gain-of-function mutants showed enhanced salt tolerance, whereas the loss-of-function mutant was more sensitive to salt compared to the wild type. Transcriptomic analysis revealed that over-expression of JMJ15 down-regulated many genes which are preferentially marked by H3K4me3 and H3K4me2. Many of the down-regulated genes encode transcription regulators involved in stress responses. The data suggest that increased JMJ15 levels may regulate the gene expression program that enhances stress tolerance

    Predicting dissolved lignin phenol concentrations in the coastal ocean from chromophoric dissolved organic matter (CDOM) absorption coefficients

    Get PDF
    Dissolved lignin is a well-established biomarker of terrigenous dissolved organic matter (DOM) in the ocean, and a chromophoric component of DOM. Although evidence suggests there is a strong linkage between lignin concentrations and chromophoric DOM (CDOM) absorption coefficients in coastal waters, the characteristics of this linkage and the existence of a relationship that is applicable across coastal oceans remain unclear. Here, 421 paired measurements of dissolved lignin concentrations (sum of 9 lignin phenols) and CDOM absorption coefficients (ag(位)) were used to examine their relationship along the river-ocean continuum (0-37 salinity) and across contrasting coastal oceans (sub-tropical, temperate, high-latitude). Overall, lignin concentrations spanned four orders of magnitude and revealed a strong, non-linear relationship with ag(位). The characteristics of the relationship (shape, wavelength dependency, lignin-composition dependency) and evidence from degradation indicators were all consistent with lignin being an important driver of CDOM variability in coastal oceans, and suggested physical mixing and long-term photodegradation were important in shaping the relationship. These observations were used to develop two simple empirical models for estimating lignin concentrations from ag(位) with a +/- 20% error relative to measured values. The models are expected to be applicable in most coastal oceans influenced by terrigenous inputs
    corecore