624 research outputs found
Three-body electrodisintegration of the three-nucleon bound state with Î-isobar excitation: Processes below pion-production threshold
Electron scattering from the three-nucleon bound state with two- and three-body disintegration is described. The description uses the purely nucleonic charge-dependent CD-Bonn potential and its coupled-channel extension CDâBonn+Î. Exact solutions of three-particle equations are employed for the initial and final states of the reactions. The current has one-baryon and two-baryon contributions and couples nucleonic with Î-isobar channels. Î-isobar effects on the observables are isolated. The Î-isobar excitation yields an effective three-nucleon force and effective two- and three-nucleon currents beside other Î-isobar effects; they are mutually consistent
Trinucleon photonuclear reactions with Î-isobar excitation: Processes below pion-production threshold
Radiative nucleon-deuteron capture and two- and three-body photodisintegration of the three-nucleon bound state are described. The description uses the purely nucleonic charge-dependent CD-Bonn potential and its coupled-channel extension CD Bonn +Î. The Î-isobar excitation yields an effective three-nucleon force and effective two- and three-nucleon currents beside other Î-isobar effects; they are mutually consistent. Exact solutions of three-particle equations are employed for the initial and final states of the reactions. The current has one-baryon and two-baryon contributions and couples nucleonic with Î-isobar channels. Î-isobar effects on the observables are isolated. Shortcomings of the theoretical description are discussed and their consequence for the calculation of observables is estimated
Two-body electrodisintegration of the three-nucleon bound state with Î-isobar excitation
Electrodisintegration of the three-nucleon bound state with two-body final states is described. The description uses nucleon degrees of freedom extended to include the excitation of a single nucleon to a Î isobar. The baryonic interaction and the electromagnetic current couple nucleonic states and states with a Î isobar. Exact solutions of three-particle scattering equations are employed for the initial and final states of the reactions; due to the excitation of the Î isobar an effective three-nucleon force is included. The current has one-baryon and two-baryon contributions. Theoretical predictions for the reactions with selected kinematic specifications are given. The role of the Î isobar in the description of the considered processes is discussed and its effect on observables is quantitatively isolated
Left-right asymmetry for pion and kaon production in the semi-inclusive deep inelastic scattering process
We analyze the left-right asymmetry in the semi-inclusive deep inelastic
scattering (SIDIS) process without introducing any weighting functions. With
the current theoretical understanding, we find that the Sivers effect plays a
key role in our analysis. We use the latest parametrization of the Sivers and
fragmentation functions to reanalyze the production process and find
that the results are sensitive to the parametrization. We also extend our
calculation on the production, which can help us know more about the
Sivers distribution of the sea quarks and the unfavored fragmentation
processes. HERMES kinematics with a proton target, COMPASS kinematics with a
proton, deuteron, and neutron target (the information on the neutron target can
be effectively extracted from the He target), and JLab kinematics (both 6
GeV and 12 GeV) with a proton and neutron target are considered in our paper.Comment: 7 latex pages, 11 figures, final version for publication, with
references update
Transverse Spin Structure of the Nucleon through Target Single Spin Asymmetry in Semi-Inclusive Deep-Inelastic Reaction at Jefferson Lab
Jefferson Lab (JLab) 12 GeV energy upgrade provides a golden opportunity to
perform precision studies of the transverse spin and
transverse-momentum-dependent structure in the valence quark region for both
the proton and the neutron. In this paper, we focus our discussion on a
recently approved experiment on the neutron as an example of the precision
studies planned at JLab. The new experiment will perform precision measurements
of target Single Spin Asymmetries (SSA) from semi-inclusive electro-production
of charged pions from a 40-cm long transversely polarized He target in
Deep-Inelastic-Scattering kinematics using 11 and 8.8 GeV electron beams. This
new coincidence experiment in Hall A will employ a newly proposed solenoid
spectrometer (SoLID). The large acceptance spectrometer and the high polarized
luminosity will provide precise 4-D (, , and ) data on the
Collins, Sivers, and pretzelocity asymmetries for the neutron through the
azimuthal angular dependence. The full 2 azimuthal angular coverage in the
lab is essential in controlling the systematic uncertainties. The results from
this experiment, when combined with the proton Collins asymmetry measurement
and the Collins fragmentation function determined from the ee collision
data, will allow for a quark flavor separation in order to achieve a
determination of the tensor charge of the d quark to a 10% accuracy. The
extracted Sivers and pretzelocity asymmetries will provide important
information to understand the correlations between the quark orbital angular
momentum and the nucleon spin and between the quark spin and nucleon spin.Comment: 23 pages, 13 figures, minor corrections, matches published versio
Weighted azimuthal asymmetries in a diquark spectator model
We analytically calculate weighted azimuthal asymmetries in semi-inclusive
lepton-nucleon deep-inelastic scattering and Drell-Yan processes, using
transverse-momentum-dependent partonic densities obtained in a diquark
spectator model. We compare the asymmetries with available preliminary
experimental data, in particular for the Collins and the Sivers effect. We make
predictions for other cases of interest in running and planned experiments.Comment: 21 pages, 13 (multiple) figures in eps format, RevTeX
Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER)
A multi-purpose fixed-target experiment using the proton and lead-ion beams
of the LHC was recently proposed by Brodsky, Fleuret, Hadjidakis and Lansberg,
and here we concentrate our study on some issues related to the spin physics
part of this project (referred to as AFTER). We study the nucleon spin
structure through and processes with a fixed-target experiment using
the LHC proton beams, for the kinematical region with 7 TeV proton beams at the
energy in center-of-mass frame of two nucleons GeV. We calculate
and estimate the azimuthal asymmetries of unpolarized and
dilepton production processes in the Drell--Yan continuum region and at the
-pole. We also calculate the , and
azimuthal asymmetries of and dilepton production
processes with the target proton and deuteron longitudinally or transversally
polarized in the Drell--Yan continuum region and around resonances region.
We conclude that it is feasible to measure these azimuthal asymmetries,
consequently the three-dimensional or transverse momentum dependent parton
distribution functions (3dPDFs or TMDs), at this new AFTER facility.Comment: 15 pages, 40 figures. Version accepted for publication in EPJ
Measurements of the Mass and Full-Width of the Meson
In a sample of 58 million events collected with the BES II detector,
the process J/ is observed in five different decay
channels: , , (with ), (with
) and . From a combined fit of all five
channels, we determine the mass and full-width of to be
MeV/ and
MeV/.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.
A Measurement of Psi(2S) Resonance Parameters
Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been
measured in the vicinity of the Psi(2S) resonance using the BESII detector
operated at the BEPC. The Psi(2S) total width; partial widths to hadrons,
pi+pi- J/Psi, muons; and corresponding branching fractions have been determined
to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)=
(2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)=
(97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%,
respectively.Comment: 8 pages, 6 figure
- âŠ