257 research outputs found

    A discussion on numerical shock stability of unstructured finite volume method: Riemann solvers and limiters

    Full text link
    Numerical shock instability is a complexity which may occur in supersonic simulations. Riemann solver is usually the crucial factor that affects both the computation accuracy and numerical shock stability. In this paper, several classical Riemann solvers are discussed, and the intrinsic mechanism of shock instability is especially concerned. It can be found that the momentum perturbation traversing shock wave is a major reason that invokes instability. Furthermore, slope limiters used to depress oscillation across shock wave is also a key factor for computation stability. Several slope limiters can cause significant numerical errors near shock waves, and make the computation fail to converge. Extra dissipation of Riemann solvers and slope limiters can be helpful to eliminate instability, but reduces the computation accuracy. Therefore, to properly introduce numerical dissipation is critical for numerical computations. Here, pressure based shock indicator is used to show the position of shock wave and tunes the numerical dissipation. Overall, the presented methods are showing satisfactory results in both the accuracy and stability.Comment: Presented at 2nd International Conference in Aerospace for Young Scientists. 07-08 September 2017, Beijing, P.R.Chin

    RESEARCH ON DAMAGE CHARACTERISTICS AND PROTECTIVE STRUCTURE DESIGN OF STEEL PONTOONS UNDER NEAR-FIELD EXPLOSION LOAD

    Get PDF
    The focus of this paper is to investigate the damage characteristics and protective structure design of pontoons as an important barrier for the protection of ports. Two types of protective measures of pontoons are investigated:filling tanks with water and installing springs in tanks. In this paper, the damage characteristics of two types of pontoon side structures under the action of near-field explosion loads are simulated by using LS-DYNA explicit dynamic analysis software and the ALE algorithm. According to the numerical experiment results for filling different volumes of water in the side tanks, the volume of water for the minimum deformation of the shell plate is 100%, and for the first longitudinal bulkhead, it is 30-40%. Moreover, by applying weights to their deformations based on the actual explosion-proof performance requirements of the shell plate and the first longitudinal bulkhead, the pontoon side structure with the best explosion-proof performance can be obtained. The plastic deformation of the pontoon structure equipped with different types of springs is an order of magnitude smaller than that of the ordinary structure and of the pontoon structure filled with a water medium in the positive tanks. The explosive shock wave energy absorbed by the pontoon is effectively reduced by the addition of water or springs to the protective tanks. The minimum energy absorbed by the pontoon structure with water added in the protective tanks is 18.31% of the energy absorbed by the ordinary structure, and the corresponding volume ratio of water added in the protective tanks is 100%. The pontoon structure with springs in the side protection tanks absorbs only 7.2% of the energy absorbed by the ordinary structure. Both new side protection structures have demonstrated excellent explosion-proof performance

    Striking Isotopologue-Dependent Photodissociation Dynamics of Water Molecules:The Signature of an Accidental Resonance

    Get PDF
    Investigations of the photofragmentation patterns of both light and heavy water at the state-to-state level are a prerequisite for any thorough understanding of chemical processing and isotope heterogeneity in the interstellar medium. Here we reveal dynamical features of the dissociation of water molecules following excitation to the (C) over tilde (010) state using a tunable vacuum ultraviolet source in combination with the high-resolution H(D)-atom Rydberg tagging time-of-flight technique. The action spectra for forming H(D) atoms and the OH(OD) product state distributions resulting from excitation to the (C) over tilde (010) states of H2O and D2O both show striking differences, which are attributable to the effects of an isotopologue-specific accidental resonance. Such accidental-resonance-induced state mixing may contribute to the D/H isotope heterogeneity in the solar system. The present study provides an excellent example of competitive state-to-state nonadiabatic decay pathways involving at least five electronic states

    Virtual Planning and 3D printing modeling for mandibular reconstruction with fibula free flap

    Get PDF
    This study was to evaluate the use of virtual planning and 3D printing modeling in mandibular reconstruction and compare the operation time and surgical outcome of this technique with conventional method. Between 2014 and 2017, 15 patients underwent vascularized fibula flap mandibular reconstruction using virtual planning and 3D printing modeling. Titanium plates were pre-bent using the models and cutting guides were used for osteotomies. 15 patients who underwent mandibular reconstruction using fibula flap without aid of virtual planning and 3D printing models were selected as control group. The operation time was recorded and compared in two groups. Accuracy of reconstruction was measured by superimposing the preoperative image onto the postoperative image of mandible. The selected bony landmark, distance and angle were measured. The mean total operation time and reconstruction time were 1.60±0.37 and 5.54±0.50 hours in computer-assisted group, respectively; These were 2.58±0.45 and 6.54±0.70 hours in conventional group, respectively. Both operation time and reconstruction time were shorter in computer-assisted group. The difference between the preoperative and postoperative intercondylar distances, intergonial angle distances, anteroposterior distances and gonial angles were 2.92±1.15 and 4.48±1.41mm, 2.93±1.19 and 4.79±1.48mm, 4.31±1.24 and 5.61±1.41mm, 3.85±1.68° and 5.88±2.12° in the computer-assisted and conventional group, respectively. The differences between the preoperative and postoperative mandible is smaller in the computer-assisted group. Virtual planning and 3D printing modeling have the potential to increase mandibular reconstruction accuracy and reduce operation time. we believe that this technology for mandibular reconstruction in selected patients will become a used method and improve the quality of reconstruction

    Elucidating the impact of in vitro cultivation on Nicotiana tabacum metabolism through combined in silico modeling and multiomics analysis

    Get PDF
    The systematical characterization and understanding of the metabolic behaviors are the basis of the efficient plant metabolic engineering and synthetic biology. Genome-scale metabolic networks (GSMNs) are indispensable tools for the comprehensive characterization of overall metabolic profile. Here we first constructed a GSMN of tobacco, which is one of the most widely used plant chassis, and then combined the tobacco GSMN and multiomics analysis to systematically elucidate the impact of in-vitro cultivation on the tobacco metabolic network. In-vitro cultivation is a widely used technique for plant cultivation, not only in the field of basic research but also for the rapid propagation of valuable horticultural and pharmaceutical plants. However, the systemic effects of in-vitro cultivation on overall plant metabolism could easily be overlooked and are still poorly understood. We found that in-vitro tobacco showed slower growth, less biomass and suppressed photosynthesis than soil-grown tobacco. Many changes of metabolites and metabolic pathways between in-vitro and soil-grown tobacco plants were identified, which notably revealed a significant increase of the amino acids content under in-vitro condition. The in silico investigation showed that in-vitro tobacco downregulated photosynthesis and primary carbon metabolism, while significantly upregulated the GS/GOGAT cycle, as well as producing more energy and less NADH/NADPH to acclimate in-vitro growth demands. Altogether, the combination of experimental and in silico analyses offers an unprecedented view of tobacco metabolism, with valuable insights into the impact of in-vitro cultivation, enabling more efficient utilization of in-vitro techniques for plant propagation and metabolic engineering

    The ARID1A-METTL3-m6A axis ensures effective RNase H1-mediated resolution of R-loops and genome stability

    Get PDF
    R-loops are three-stranded structures that can pose threats to genome stability. RNase H1 precisely recognizes R-loops to drive their resolution within the genome, but the underlying mechanism is unclear. Here, we report that ARID1A recognizes R-loops with high affinity in an ATM-dependent manner. ARID1A recruits METTL3 and METTL14 to the R-loop, leading to the m6A methylation of R-loop RNA. This m6A modification facilitates the recruitment of RNase H1 to the R-loop, driving its resolution and promoting DNA end resection at DSBs, thereby ensuring genome stability. Depletion of ARID1A, METTL3, or METTL14 leads to R-loop accumulation and reduced cell survival upon exposure to cytotoxic agents. Therefore, ARID1A, METTL3, and METTL14 function in a coordinated, temporal order at DSB sites to recruit RNase H1 and to ensure efficient R-loop resolution. Given the association of high ARID1A levels with resistance to genotoxic therapies in patients, these findings open avenues for exploring potential therapeutic strategies for cancers with ARID1A abnormalities

    A novel data-driven multi-energy load forecasting model

    Get PDF
    With the increasing concern on energy crisis, the coordination of multiple energy sources and low-carbon economic operation of integrated energy system (IES) have drawn more and more attention in recent years. In IES, accurate and effective multi-energy load forecasting becomes a research hotspot, especially using the high-performance data mining and machine learning algorithms. However, due to the huge difference in energy utilization between IES and traditional energy systems, the load forecasting of IES is more difficult and complex. In fact, in IES, load forecasting is not only related to external factors such as meteorological parameters and different seasons, but the correlation between energy consumption of different types of loads also plays an important role. In order to deal with the strong coupling and high uncertainty issues in IES, a novel data-driven multi-energy load forecasting model is proposed in this paper. Firstly, a feature extraction method based on Uniform Manifold Approximation and Projection (UMAP) for multi-energy load of the IES is developed, which reduces the dimension of the complex nonlinear input data. Then, considering multi-energy coupling correlation, a combined TCN-NBeats model is proposed for the joint prediction of multi-energy loads, aiming to improve the prediction accuracy through ensemble learning. Finally, the numerical case analysis using the multi-energy consumption data of an actual campus verifies the effectiveness and accuracy of the proposed data-driven multi-energy load forecasting model

    Ultraviolet photochemistry of ethane:implications for the atmospheric chemistry of the gas giants

    Get PDF
    Chemical processing in the stratospheres of the gas giants is driven by incident vacuum ultraviolet (VUV) light. Ethane is an important constituent in the atmospheres of the gas giants in our solar system. The present work describes translational spectroscopy studies of the VUV photochemistry of ethane using tuneable radiation in the wavelength range 112 ≤ λ ≤ 126 nm from a free electron laser and event-triggered, fast-framing, multi-mass imaging detection methods. Contributions from at least five primary photofragmentation pathways yielding CH(2), CH(3) and/or H atom products are demonstrated and interpreted in terms of unimolecular decay following rapid non-adiabatic coupling to the ground state potential energy surface. These data serve to highlight parallels with methane photochemistry and limitations in contemporary models of the photoinduced stratospheric chemistry of the gas giants. The work identifies additional photochemical reactions that require incorporation into next generation extraterrestrial atmospheric chemistry models which should help rationalise hitherto unexplained aspects of the atmospheric ethane/acetylene ratios revealed by the Cassini–Huygens fly-by of Jupiter
    corecore