172 research outputs found

    Kinetic simulations of relativistic magnetic reconnection with synchrotron and inverse Compton cooling

    Full text link
    First results are presented from kinetic numerical simulations of relativistic collisionless magnetic reconnection in pair plasma that include radiation reaction from both synchrotron and inverse Compton (IC) processes, motivated by non-thermal high-energy astrophysical sources, including in particular blazars. These simulations are initiated from a configuration known as 'ABC fields' that evolves due to coalescence instability and generates thin current layers in its linear phase. Global radiative efficiencies, instability growth rates, time-dependent radiation spectra, lightcurves, variability statistics and the structure of current layers are investigated for a broad range of initial parameters. We find that the IC radiative signatures are generally similar to the synchrotron signatures. The luminosity ratio of IC to synchrotron spectral components, the Compton dominance, can be modified by more than one order of magnitude with respect to its nominal value. For very short cooling lengths, we find evidence for modification of the temperature profile across the current layers, no systematic compression of plasma density, and very consistent profiles of E.B. We decompose the profiles of E.B with the use of the Vlasov momentum equation, demonstrating a contribution from radiation reaction at the thickness scale consistent with the temperature profile.Comment: 18 pages, 6 figures, accepted for publication in the Journal of Plasma Physics, special collection "Plasma physics under extreme conditions: from high-energy-density experiments to astrophysics", Eds. F. Fiuza, R. D. Blandford & S. Glenze

    Black hole magnetosphere with small scale flux tubes--II. Stability and dynamics

    Full text link
    In some Seyfert Galaxies, the hard X-rays that produce fluorescent emission lines are thought to be generated in a hot corona that is compact and located at only a few gravitational radii above the supermassive black hole. We consider the possibility that this X-ray source may be powered by small scale magnetic flux tubes attached to the accretion disk near the black hole. We use three dimensional, time dependent force-free simulations in a simplified setting to study the dynamics of such flux tubes as they get continuously twisted by the central compact star/black hole. We find that, the dynamical evolution of the flux tubes connecting the central compact object and the accretion disk is strongly influenced by the confinement of the surrounding field. Although differential rotation between the central object and the disk tends to inflate the flux tubes, strong confinement from surrounding field quenches the formation of a jet-like outflow, as the inflated flux tube becomes kink unstable and dissipates most of the extracted rotational energy relatively close to the central object. Such a process may be able to heat up the plasma and produce strong X-ray emission. We estimate the energy dissipation rate and discuss its astrophysical implications.Comment: 16 pages, 17 figures. Accepted for publication in MNRA
    corecore