211 research outputs found

    Strain-induced semiconductor to metal transition in MA2Z4 bilayers

    Full text link
    Very recently, a new type of two-dimensional layered material MoSi2N4 has been fabricated, which is semiconducting with weak interlayer interaction, high strength, and excellent stability. We systematically investigate theoretically the effect of vertical strain on the electronic structure of MA2Z4 (M=Ti/Cr/Mo, A=Si, Z=N/P) bilayers. Taking bilayer MoSi2N4 as an example, our first principle calculations show that its indirect band gap decreases monotonically as the vertical compressive strain increases. Under a critical strain around 22%, it undergoes a transition from semiconductor to metal. We attribute this to the opposite energy shift of states in different layers, which originates from the built-in electric field induced by the asymmetric charge transfer between two inner sublayers near the interface. Similar semiconductor to metal transitions are observed in other strained MA2Z4 bilayers, and the estimated critical pressures to realize such transitions are within the same order as semiconducting transition metal dichalcogenides. The semiconductor to metal transitions observed in the family of MA2Z4 bilayers present interesting possibilities for strain-induced engineering of their electronic properties

    Geometrical and electrical modulation on the transport property of silicene constrictions

    Full text link
    We study the electrical modulation of the transport properties of silicene constrictions with different geometrical structures by adopting the tight-binding model and non-equilibrium Green's function method. The band structure and transmission properties are discussed under the influence of the external electric field and potential energy. Especially, we investigate the effects of the position and width of the central scattering region on the conductance with increasing of Fermi energy. We find that the conductance significantly depends on the position and the width. Interestingly, the symmetrical structure of the central region can induce a resonance effect and significantly enlarge the system's conductance. Obviously, we obtain an effective method to adjust the transport property of the silicene heterojunctions. Correspondingly, we propose a novel two-channel structure with an excellent performance on the conductance compared to the one-channel structure with the same total width.Comment: 7 pages, 8 figure

    Nuclear Magnetic Resonance Measurements in High Flat-top Pulsed Magnetic Field up to 40 T at WHMFC

    Full text link
    Nuclear magnetic resonance (NMR) technique benefits from high magnetic field not only due to the field-enhanced measurement sensitivity and resolution, but also because it is a powerful tool to investigate field-induced physics in modern material science. In this study, we successfully performed NMR measurements in high flat-top pulsed magnetic field (FTPMF) up to 40 T. A two-stage corrected FTPMF with fluctuation less than 10 mT and duration longer than 9 ms was established. Besides, a Giga-Hz NMR spectrometer and a sample probe suitable for pulsed-field condition were developed. Both free-induction-decay and spin-echo sequences were exploited for the measurements. The derived 93^{93}Nb NMR results show that the stability and homogeneity of the FTPMF reach an order of 102^2 ppm / 10 ms and 102^2 ppm / 10 mm3^3 respectively, which is approaching a degree of maturity for some researches on condensed matter physics.Comment: 8 pages, 9 figure

    Overexpression of ERBB-2 was more frequently detected in malignant than benign pheochromocytomas by multiplex ligation-dependent probe amplification and immunohistochemistry

    Get PDF
    To analyze the genetic alterations of pheochromocytomas and evaluate the difference among malignant, extra-adrenal, and benign pheochromocytomas. Forty-three tumor samples were tested for genetic changes using multiplex ligation-dependent probe amplification. Among them, 39 samples were available for protein expression analysis by immunohistochemistry (IHC). All 43 patients (24 women and 19 men; mean age 44.6±13.6 years; range 18–75 years; 9 with malignant, 7 extra-adrenal, and 27 benign) showed multiple copy number losses or gains. The average copy number change was 13.10 in malignant, 13.93 in benign, and 13.47 in paraganglioma patients. There is no significant difference among the three groups of pheochromocytomas. However, we discovered that in the malignant pheochromocytomas, 6 of the 9 patients (67%) showed erythroblastic leukemia viral oncogene homolog 2 (ERBB-2) oncogene gain, whereas only 12 of the 34 (35%) identified change in the benign and extra-adrenal pheochromocytomas. Further, IHC confirmed that ERBB-2-positive staining was more frequent and stronger in malignant pheochromocytomas than in benign and extra-adrenal pheochromocytomas. Our study illustrates the chromosomal changes of the whole genome of Chinese pheochromocytoma patients. The results suggest that there may be certain progression of genetic events that involves chromosomes 1p, 3p, 6p, 11q, 12q, 17q, and 19q in the development of pheochromocytomas, and the activation of ERBB-2 located on chromosome 17q is an important and early event in the malignancy development of these tumor types. The overexpression of ERBB-2 identified by IHC suggested that this oncogene could be associated with the malignancy of pheochromocytomas and paragangliomas

    SPOT: Scalable 3D Pre-training via Occupancy Prediction for Autonomous Driving

    Full text link
    Annotating 3D LiDAR point clouds for perception tasks including 3D object detection and LiDAR semantic segmentation is notoriously time-and-energy-consuming. To alleviate the burden from labeling, it is promising to perform large-scale pre-training and fine-tune the pre-trained backbone on different downstream datasets as well as tasks. In this paper, we propose SPOT, namely Scalable Pre-training via Occupancy prediction for learning Transferable 3D representations, and demonstrate its effectiveness on various public datasets with different downstream tasks under the label-efficiency setting. Our contributions are threefold: (1) Occupancy prediction is shown to be promising for learning general representations, which is demonstrated by extensive experiments on plenty of datasets and tasks. (2) SPOT uses beam re-sampling technique for point cloud augmentation and applies class-balancing strategies to overcome the domain gap brought by various LiDAR sensors and annotation strategies in different datasets. (3) Scalable pre-training is observed, that is, the downstream performance across all the experiments gets better with more pre-training data. We believe that our findings can facilitate understanding of LiDAR point clouds and pave the way for future exploration in LiDAR pre-training. Codes and models will be released.Comment: 15 pages, 9 figure

    Diurnal and Seasonal Patterns of Methane Emissions from a Dairy Operation in North China Plain

    Get PDF
    In China, dairy cattle managed in collective feedlots contribute about 30% of the milk production and are believed to be an important contributor to national methane emissions. Methane emissions from a collective dairy feedlot in North China Plain (NCP) were measured during the winter, spring, summer, and fall seasons with open-path lasers in combination with an inverse dispersion technique. Methane emissions from the selected dairy feedlot were characterized by an apparent diurnal pattern with three peaks corresponding to the schedule of feeding activities. On a per capita basis, daily methane emission rates of these four seasons were 0.28, 0.32, 0.33, and 0.30 kg head−1 d−1, respectively. In summary, annual methane emission rate was 112.4 kg head−1 yr−1 associated with methane emission intensity of 32.65 L CH4 L−1 of milk and potential methane conversion factor Ym of 6.66% of gross energy intake for mature dairy cows in North China Plain

    Genetic variations in the DYNC2H1 gene causing SRTD3 (short-rib thoracic dysplasia 3 with or without polydactyly)

    Get PDF
    Background and aims: Short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3) represents a type of severe fetal skeletal dysplasia (SD) characterized by shortened limbs, narrow thorax with or without polydactyly, which is caused by the homozygous or compound heterozygous mutations in the DYNC2H1 gene. SRTD3 is a recessive disorder, identification of the responsible genetic variation would be beneficial to an accurate prenatal diagnosis and well-grounded counseling for the affected families.Material and methods: Two families having experienced recurrent fetal SDs were recruited and submitted to a multiplatform genetic investigation. Whole-exome sequencing (WES) was performed with samples collected from the probands. Sanger sequencing and fluorescent quantitative PCR (qPCR) were conducted as validation assays for suspected variations.Results: WES identified two compound heterozygous variations in the DYNC2H1(NM_001080463.2) gene, namely c.2386C>T (p.Arg796Trp) and c.7289T>C (p.Ile2430Thr) for one; and exon (64–83)del and c.8190G>T (p.Leu2730Phe) for the other, respectively. One variant in them, exon (64–83)del, was novelly identified.Conclusion: The study detected two compound heterozygous variation in DYNC2H1 including one novel deletion: exon (64–83) del. Our findings clarified the cause of fetal skeletal dysplasia in the subject families, provided guidance for their future pregnancies, and highlighted the value of WES in diagnosis of skeletal dysplasia with unclear prenatal indications
    • …
    corecore