301 research outputs found

    Stochastic equations with low regularity drifts

    Full text link
    By using the It\^{o}-Tanaka trick, we prove the unique strong solvability as well as the gradient estimates for stochastic differential equations with irregular drifts in low regularity Lebesgue-H\"{o}lder space Lq(0,T;Cbα(Rd))L^q(0,T;{\mathcal C}_b^\alpha({\mathbb R}^d)) with α∈(0,1)\alpha\in(0,1) and q∈(2/(1+α),2q\in (2/(1+\alpha),2). As applications, we show the unique weak and strong solvability for stochastic transport equations driven by the low regularity drift with q∈(4/(2+α),2q\in (4/(2+\alpha),2) as well as the local Lipschitz estimate for stochastic strong solutions

    Optimization for heat and sound insulation of honeycomb sandwich panel in thermal environments

    Get PDF
    An optimization based on sequential quadratic programming (SQP) algorithm to increase the thermal insulation and sound transmission loss of honeycomb panel in thermal environments is presented. First, heat transfer analysis is performed to reveal the steady-state thermal performance of hexagonal aluminum honeycomb sandwich panel, by using the semi-empirical Swann and Pittman formula. Next, the influences of temperature on acoustic performance of honeycomb panel based on statistical energy analysis method (SEA) is performed. Results show that increasing the thickness of the honeycomb core can improve the acoustic performance and heat insulation behavior

    Probability hypothesis density filter with adaptive parameter estimation for tracking multiple maneuvering targets

    Get PDF
    AbstractThe probability hypothesis density (PHD) filter has been recognized as a promising technique for tracking an unknown number of targets. The performance of the PHD filter, however, is sensitive to the available knowledge on model parameters such as the measurement noise variance and those associated with the changes in the maneuvering target trajectories. If these parameters are unknown in advance, the tracking performance may degrade greatly. To address this aspect, this paper proposes to incorporate the adaptive parameter estimation (APE) method in the PHD filter so that the model parameters, which may be static and/or time-varying, can be estimated jointly with target states. The resulting APE-PHD algorithm is implemented using the particle filter (PF), which leads to the PF-APE-PHD filter. Simulations show that the newly proposed algorithm can correctly identify the unknown measurement noise variances, and it is capable of tracking multiple maneuvering targets with abrupt changing parameters in a more robust manner, compared to the multi-model approaches

    CircularRNA_0119872 regulates the microRNA-582- 3p/E2F transcription factor 3 pathway to promote the progression of malignant melanoma

    Get PDF
    OBJECTIVES: Malignant melanoma (MM) is an invasive tumor that poses a threat to patient health. Circular RNAs (circRNAs) are important regulators of MM carcinogenesis. In this study, we investigated the expression characteristics and biological functions of, and mechanism underlying, circ_0119872 expression in MM. METHODS: Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was employed to examine the circ_0119872, microRNA (miR)-582-3p, and E2F transcription factor 3 (E2F3) mRNA expression levels in MM tissues and cell lines. Western blotting was performed to quantify E2F3 protein expression. MM cells with circ_0119872 knockdown were established, and cell counting kit 8 (CCK-8) and transwell assays were utilized to examine the function of circ_0119872 and its effects on the malignant characteristics of MM cells. The MiRDB and TargetScan databases were used to predict the target genes of miR-582-3p. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to explore the biological functions of the target genes of miR582-3p. Additionally, a dual-luciferase reporter gene experiment was performed to verify the targeting relationship between circ_0119872 and miR-582-3p as well as that between miR-582-3p and E2F3. RESULTS: Circ_0119872 was remarkably upregulated in MM tissues and cell lines. Circ_0119872 knockdown suppressed the cell proliferation and metastasis In addition, miR-582-3p was identified as a downstream target of circ_0119872. The target genes of miR-193a-3p are involved in melanogenesis and cancer-related signaling pathways. Mechanistically, circ_0119872 facilitated MM progression by adsorbing miR-582-3p and upregulating E2F3 expression. CONCLUSION: Circ_0119872 is an oncogenic circRNA that participates in the promotion of MM progression by regulating the miR-582-3p/E2F3 axis

    Bioactivating a bone substitute accelerates graft incorporation in a murine model of vertical ridge augmentation

    Get PDF
    OBJECTIVE: Compared to autologous bone grafts, allogeneic bone grafts integrate slowly, which can adversely affect clinical outcomes. Here, our goal was to understand the molecular mechanisms underlying graft incorporation, and then test clinically feasible methods to accelerate this process. METHODS: Wild-type and transgenic Wnt reporter mice were used in a vertical ridge augmentation procedure. The surgery consisted of tunneling procedure to elevate the maxillary edentulous ridge periosteum, followed by the insertion of bone graft. Micro-computed tomographic imaging, and molecular/cellular analyses were used to follow the bone graft over time. Sclerostin null mice, and mice carrying an activated form of β-catenin were evaluated to understand how elevated Wnt signaling impacted edentulous ridge height and based on these data, a biomimetic strategy was employed to combine bone graft particles with a formulation of recombinant WNT protein. Thereafter, the rate of graft incorporation was evaluated. RESULTS: Tunneling activated osteoprogenitor cell proliferation from the periosteum. If graft particles were present, then osteoprogenitor cells attached to the matrix and gave rise to new bone that augmented edentulous ridge height. Graft particles alone did not stimulate osteoprogenitor cell proliferation. Based on the thicker edentulous ridges in mice with amplified Wnt signaling, a strategy was undertaken to load bone graft particles with WNT; this combination was sufficient to accelerate the initial step of graft incorporation. SIGNIFICANCE: Local delivery of a WNT protein therapeutic has the potential to accelerate graft incorporation, and thus shorten the time to when the graft can support a dental implant

    Measurement report: The promotion of low-level jet and thermal-effect on development of deep convective boundary layer at the southern edge of the Taklimakan Desert

    Get PDF
    A vigorous development process of the deep convective boundary layer (CBL) was observed at the southern edge of the Taklimakan Desert on 6 June, 2022. Based on coherent Doppler wind lidar and ERA5 data, the formation mechanism of the deep CBL exceeding 5 km was well analyzed, which was mainly promoted by the low-level jet (LLJ) and thermal-effect. The LLJ has made sufficient momentum, energy and material preparations for the development of the deep CBL. Firstly, the cold downhill airflow of the Tibet Plateau leading to LLJ weakens the height and intensity of the temperature inversion layer, which reduces the energy demand for the broken of the IL. Secondly, the LLJ not only supplements the material and energy in the residual layer, but also suppresses the exchange with the lower atmosphere. In addition, the LLJ provides a driving force for the development of the deep CBL. In terms of thermal factors, the Tibet Plateau sensible heat driven air-pump and cold front transit provide additional impetus for the development of the deep CBL. Finally, the formation of deep CBL was catalyzed by the extreme thermal effects of the underlying surface, such as the furnace effect and the atmospheric superadiabatic expansion process. The study of the development of the deep CBL is important for revealing the land-air exchange process of momentum, energy, and material between the Taklimakan Desert and the Tibetan Plateau

    Icosahedral B\u3csub\u3e12\u3c/sub\u3e-containing core–shell structures of B\u3csub\u3e80\u3c/sub\u3e

    Get PDF
    Low-lying icosahedral (Ih) B12-containing structures of B80 are explored, and a number of core–shell isomers are found to have lower energy than the previous predicted B80 fullerene. The structural transformation of boron clusters from tubular structure to core–shell structure may occur at a critical size less than B80

    Two-dimensional interlocked pentagonal bilayer ice: how do water molecules form a hydrogen bonding network?

    Get PDF
    The plethora of ice structures observed both in bulk and under nanoscale confinement reflects the extraordinary ability of water molecules to form diverse forms of hydrogen bonding networks. An ideal hydrogen bonding network of water should satisfy three requirements: (1) four hydrogen bonds connected with every water molecule, (2) nearly linear hydrogen bonds, and (3) tetrahedral configuration for the four hydrogen bonds around an O atom. However, under nanoscale confinement, some of the three requirements have to be unmet, and the selection of the specific requirement(s) leads to different types of hydrogen bonding structures. According to molecular dynamics (MD) simulations for water confined between two smooth hydrophobic walls, we obtain a phase diagram of three two-dimensional (2D) crystalline structures and a bilayer liquid. A new 2D bilayer ice is found and named the interlocked pentagonal bilayer ice (IPBI), because its side view comprises interlocked pentagonal channels. The basic motif in the top view of IPBI is a large hexagon composed of four small pentagons, resembling the top view of a previously reported ‘‘coffin’’ bilayer ice [Johnston, et al., J. Chem. Phys., 2010, 133, 154516]. First-principles optimizations suggest that both bilayer ices are stable. However, there are fundamental differences between the two bilayer structures due to the difference in the selection among the three requirements. The IPBI sacrifices the linearity of hydrogen bonds to retain locally tetrahedral configurations of the hydrogen bonds, whereas the coffin structure does the opposite. The tradeoff between the conditions of an ideal hydrogen bonding network can serve as a generic guidance to understand the rich phase behaviors of nanoconfined water
    • …
    corecore