58,434 research outputs found

    Single-Transverse Spin Asymmetry in Dijet Correlations at Hadron Colliders

    Get PDF
    We present a phenomenological study of the single-transverse spin asymmetry in azimuthal correlations of two jets produced nearly "back-to-back" in pp collisions at RHIC. We properly take into account the initial- and final-state interactions of partons that can generate this asymmetry in QCD hard-scattering. Using distribution functions fitted to the existing single-spin data, we make predictions for various weighted single-spin asymmetries in dijet correlations that are now readily testable at RHIC.Comment: 14 pages, 2 figure

    Proton Spin Structure from Measurable Parton Distributions

    Full text link
    We present a systematic study of the proton spin structure in terms of measurable parton distributions. For a transversely-polarizedproton, we derive a polarization sum rule from the leading generalized parton distributions appearing in hard exclusive processes. For a longitudinally-polarized proton, we obtain a helicity decomposition from well-known quark and gluon helicity distributions and orbital angular-momentum contributions. The latter is shown to be related to measurable subleading generalized parton distributions and quantum-phase space Wigner distributions.Comment: 7 pages, title change

    Quantum key distribution over 122 km of standard telecom fiber

    Full text link
    We report the first demonstration of quantum key distribution over a standard telecom fiber exceeding 100 km in length. Through careful optimisation of the interferometer and single photon detector, we achieve a quantum bit error ratio of 8.9% for a 122km link, allowing a secure shared key to be formed after error correction and privacy amplification. Key formation rates of up to 1.9 kbit/sec are achieved depending upon fiber length. We discuss the factors limiting the maximum fiber length in quantum cryptography

    Probing Electroweak Symmetry Breaking Mechanism at the LHC: A Guideline from Power Counting Analysis

    Full text link
    We formulate the equivalence theorem as a theoretical criterion for sensitively probing the electroweak symmetry breaking mechanism, and develop a precise power counting method for the chiral Lagrangian formulated electroweak theories. Armed with these, we perform a systematic analysis on the sensitivities of the scattering processes W±W±→W±W±W^\pm W^\pm \rightarrow W^\pm W^\pm and qqˉ′→W±Zq\bar{q}'\rightarrow W^\pm Z for testing all possible effective bosonic operators in the chiral Lagrangian formulated electroweak theories at the CERN Large Hadron Collider (LHC). The analysis shows that these two kinds of processes are "complementary" in probing the electroweak symmetry breaking sector.Comment: Extended version, 11-page-Latex-file and 3 separate PS-Figs. To be Published in Mod.Phys.Lett.

    Collins-Soper Equation for the Energy Evolution of Transverse-Momentum and Spin Dependent Parton Distributions

    Full text link
    The hadron-energy evolution (Collins and Soper) equation for all the leading-twist transverse-momentum and spin dependent parton distributions is derived in the impact parameter space. Based on the result, we present resummation formulas for the spin structure functions in the semi-inclusive deep inelastic scattering.Comment: 16 pages, 4 figures included, revised versio

    Probing Parton Orbital Angular Momentum in Longitudinally Polarized Nucleon

    Full text link
    While the total orbital angular momentum (OAM) of a definite quark flavor in a longitudinally-polarized nucleon can be obtained through a sum rule involving twist-two generalized parton distribution (GPDs), its distribution as a function of parton momentum in light-front coordinates is more complicated to define and measure because it involves intrinsically twist-three effects. In this paper, we consider two different parton OAM distributions. The first is manifestly gauge invariant, and its moments are local operators and calculable in lattice QCD. We show that it can potentially be measured through twist-three GPDs. The second is the much-debated canonical OAM distribution natural in free-field theory and light-cone gauge. We show the latter in light-cone gauge can also be related to twist-three GPDs as well as quantum phase-space Wigner distributions, both being measurable in high-energy experiments.Comment: 14 pages, no figur

    Performance Analysis of a Dual-Hop Cooperative Relay Network with Co-Channel Interference

    Get PDF
    This paper analyzes the performance of a dual-hop amplify-and-forward (AF) cooperative relay network in the presence of direct link between the source and destination and multiple co-channel interferences (CCIs) at the relay. Specifically, we derive the new analytical expressions for the moment generating function (MGF) of the output signal-to-interference-plus-noise ratio (SINR) and the average symbol error rate (ASER) of the relay network. Computer simulations are given to confirm the validity of the analytical results and show the effects of direct link and interference on the considered AF relay network
    • …
    corecore