13 research outputs found

    Recent progress on molecular breeding of rice in China

    Get PDF
    Molecular breeding of rice for high yield, superior grain quality, and strong environmental adaptability is crucial for feeding the world’s rapidly growing population. The increasingly cloned quantitative trait loci and genes, genome variations, and haplotype blocks related to agronomically important traits in rice have provided a solid foundation for direct selection and molecular breeding, and a number of genes have been successfully introgressed into mega varieties of rice. Here we summarize China’s great achievements in molecular breeding of rice in the following five traits: high yield, biotic stress resistance, abiotic stress resistance, quality and physiology. Further, the prospect of rice breeding by molecular design is discussed

    Quantitative trait locus mapping and candidate gene analysis for salt tolerance at bud stage in rice

    Get PDF
    Soil salinization has a serious influence on rice yield and quality. How to enhance salt tolerance in rice is a topical issue. In this study, 120 recombinant inbred line populations were generated through nonstop multi-generation selfing using a male indica rice variety Huazhan (Oryza sativa L. subsp. indica cv. ‘HZ’) and a female variety of Nekken2 (Oryza sativa L. subsp. japonica cv. ‘Nekken2’) as the parents. Germination under 80 mM NaCl conditions was measured and analyzed, and quantitative trait locus (QTL) mapping was completed using a genetic map. A total of 16 salt-tolerance QTL ranges were detected at bud stage in rice, which were situated on chromosomes 3, 4, 6, 8, 9, 10, 11, and 12. The maximum limit of detection was 4.69. Moreover, the qST12.3 was narrowed to a 192 kb region on chromosome 12 using map-based cloning strategy. Statistical analysis of the expression levels of these candidate genes under different NaCl concentrations by qRT-PCR revealed that qST12.3 (LOC_Os12g25200) was significantly down-regulated with increasing NaCl concentration, and the expression level of the chlorine-transporter-encoding gene LOC_Os12g25200 in HZ was significantly higher than that of Nekken2 under 0 mM NaCl. Sequencing analysis of LOC_Os12g25200 promoter region indicated that the gene expression difference between parents may be due to eight base differences in the promoter region. Through QTL mining and analysis, a plurality of candidate genes related to salt tolerance in rice was obtained, and the results showed that LOC_Os12g25200 might negatively regulate salt tolerance in rice. The results provide the basis for further screening and cultivation of salt-tolerant rice varieties and have laid the foundation for elucidating further molecular regulation mechanisms of salt tolerance in rice

    Genetic Engineering Technologies for Improving Crop Yield and Quality

    No full text
    Genetic engineering refers to the specific molecular biological modification of DNA sequences. With the rapid development of genetic engineering methods, especially the breakthroughs in guiding endonuclease technology, gene remodeling of crops has become simpler, more precise, and efficient. Genetic engineering techniques can be used to develop crops with superior traits such as high trace elements and high plant nutrients, providing an important tool to meet the needs of nearly 7.6 billion people in the world for crop yield and quality and to achieve sustainable development. This review first introduces transgenic technology and gene editing technology and analyzes the achievements in improving the efficiency of genetic transformation and regeneration in recent years. Then, it focuses on reviewing the applications of related genetic engineering technologies in improving the yield and quality of rice, maize, and wheat. In addition, the problems of genetic engineering technology in crop applications are discussed. The aim is to provide a reference for research on the development of genetic engineering technologies and the improvement of crop yield and quality

    Transcriptome analysis of Xanthomonas oryzae pv. oryzicola exposed to H2O2 reveals horizontal gene transfer contributes to its oxidative stress response.

    No full text
    Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak, is one of the most severe seed-borne bacterial diseases of rice. However, the molecular mechanisms underlying Xoc in response to oxidative stress are still unknown. In this study, we performed a time-course RNA-seq analysis on the Xoc in response to H2O2, aiming to reveal its oxidative response network. Overall, our RNA sequence analysis of Xoc revealed a significant global gene expression profile when it was exposed to H2O2. There were 7, 177, and 246 genes that were differentially regulated at the early, middle, and late stages after exposure, respectively. Three genes (xoc_1643, xoc_1946, xoc_3249) showing significantly different expression levels had proven relationships with oxidative stress response and pathogenesis. Moreover, a hypothetical protein (XOC_2868) showed significantly differential expression, and the xoc_2868 mutants clearly displayed a greater H2O2 sensitivity and decreased pathogenicity than those of the wild-type. Gene localization and phylogeny analysis strongly suggests that this gene may have been horizontally transferred from a Burkholderiaceae ancestor. Our study not only provides a first glance of Xoc's global response against oxidative stress, but also reveals the impact of horizontal gene transfer in the evolutionary history of Xoc

    Development and Application of Prime Editing in Plants

    No full text
    Clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing has greatly accelerated progress in plant genetic research and agricultural breeding by enabling targeted genomic modifications. Moreover, the prime editing system, derived from the CRISPR/Cas system, has opened the door for even more precise genome editing. Prime editing has the capability to facilitate all 12 types of base-to-base conversions, as well as desired insertions or deletions of fragments, without inducing double-strand breaks and requiring donor DNA templet. In a short time, prime editing has been rapidly verified as functional in various plants, and can be used in plant genome functional analysis as well as precision breeding of crops. In this review, we summarize the emergence and development of prime editing, highlight recent advances in improving its efficiency in plants, introduce the current applications of prime editing in plants, and look forward to future prospects for utilizing prime editing in genetic improvement and precision molecular breeding

    Additional file 1: Figure S1. of Fine Mapping Identifies a New QTL for Brown Rice Rate in Rice (Oryza Sativa L.)

    No full text
    The distribution of other seed traits in the DH population. Figure S2. The thickness of hull and brown rice in CJ06, TN1 and CSSL1-2. Table S1. QTL identified for brown rice rate in the DH population. Table S2. QTL identified for other related traits in the DH population. Table S3. Primers used in the study. Table S4. SSR markers selected to identify the CSSLs. (DOC 171 kb
    corecore