4 research outputs found

    Electron transport in a quasi-one dimensional channel on suspended helium films

    Full text link
    Quasi-one dimensional electron systems have been created using a suspended helium film on a structured substrate. The electron mobility along the channel is calculated by taking into account the essential scattering processes of electrons by helium atoms in the vapor phase, ripplons, and surface defects of the film substrate. It is shown that the last scattering mechanism may dominate the electron mobility in the low temperature limit changing drastically the temperature dependence of the mobility in comparison with that controlled by the electron-ripplon scattering.Comment: 4 pages, 1 figur

    Intersubband plasmons in quasi-one-dimensional electron systems on a liquid helium surface

    Full text link
    The collective excitation spectra are studied for a multisubband quasi-one-dimensional electron gas on the surface of liquid helium. Different intersubband plasmon modes are identified by calculating the spectral weight function of the electron gas within a 12 subband model. Strong intersubband coupling and depolarization shifts are found. When the plasmon energy is close to the energy differences between two subbands, Landau damping in this finite temperature system leads to plasmon gaps at small wavevectors.Comment: To be published as a Rapid Communication in Phys. Rev.

    Generic properties of a quasi-one dimensional classical Wigner crystal

    Get PDF
    We studied the structural, dynamical properties and melting of a quasi-one-dimensional system of charged particles, interacting through a screened Coulomb potential. The ground state energy was calculated and, depending on the density and the screening length, the system crystallizes in a number of chains. As a function of the density (or the confining potential), the ground state configurations and the structural transitions between them were analyzed both by analytical and Monte Carlo calculations. The system exhibits a rich phase diagram at zero temperature with continuous and discontinuous structural transitions. We calculated the normal modes of the Wigner crystal and the magneto-phonons when an external constant magnetic field BB is applied. At finite temperature the melting of the system was studied via Monte Carlo simulations using the modifiedmodified LindemannLindemann criterioncriterion (MLC). The melting temperature as a function of the density was obtained for different screening parameters. Reentrant melting as a function of the density was found as well as evidence of directional dependent melting. The single chain regime exhibits anomalous melting temperatures according to the MLC and as a check we study the pair correlation function at different densities and different temperatures, formulating a different criterion. Possible connection with recent theoretical and experimental results are discussed and experiments are proposed.Comment: 13 pages text, 21 picture

    ON MOBILITY OF SURFACE ELECTRONS IN LIQUID HELIUM AT TEMPERATURES UP TO 20 mK

    No full text
    On a mesuré la mobilité électronique sur la surface de l'hélium liquide à des températures de 20 mK à 1 K. On a déterminé la mobilité des électrons superficiels au moyen de l'absorption d'énergie du champ électromagnétique. Les auteurs ont constaté que dans cette gamme de température la dépendance de la mobilité électronique en fonction de la température est voisine de T-l.The mobility of electrons across the liquid helium surface has been measured in the temperature range of 20 mK-1 K. The mobility of surface electrons is estimated by the electromagnetic energy absorption. It has been found that in the temperature range studied, the temperature dependence of the electron mobility is close to T-1
    corecore