4 research outputs found

    Photolon enhanccement of ultrasound cytotoxicity

    No full text
    Objective: To evaluate the impact of Photolon on cytostatic and cytotoxic effects of therapeutic range ultrasound in C6 glioma cells. Methods: C6 glioma cells in suspension or monolayer cell culture were exposed to ultrasound (880 kHz, 0.2-0.7 W/cm2) in the presence or absence of Photolon at the concentration of 1 Β΅g/ml in the culture medium, and then cell viability was evaluated. Results: Photolon increased the cytotoxic effect of ultrasound by 1.5-2.3-fold but had no effect on its cytostatic activity. Conclusion: Photolon produces a pronounced sonosensitizing effect on glioma C6 cells and is a promising drug for sonodynamic treatment of malignant tumors

    Effects of combined sonodynamic and photodynamic therapies with photolon on a glioma C6 tumor model

    No full text
    The aim of this study was to investigate the low-power density sonication, sonodynamic therapy (SDT) with Photolon and combination of SDT and photodynamic therapy (PDT) with Photolon for the ablation of glioma C6 tumor model in rats. Methods: The study was performed on 50 rats bearing glioma C6. The tumors were sonicated with/without prior intravenous injection of photosensitizer (PS) Photolon (2.5 mg/kg b.w). Sonication was performed with 0.4; 0.7 and 1.0 W/cmΒ² power density at 1 MHz frequency for 10 min, 2.0 h after Photolon administration using BTL-5710 Sono (BTL Industries Limited, Great Britain). PDT was carried out 2.5 h after Photolon administration using diode laser with 661 nm wavelength (IMAF-AXICON, Minsk, Republic of Belarus) at doses of 50 and 100 J/cmΒ² with 0,17 W/cmΒ² fluence rate. Assessment of tumor response was performed by vital staining with Evans blue and pathologic examination. Results: The maximal tumor necrosis area that underwent sonication (1 MHz; 0.7 W/cmΒ²; 10 min.) followed by PDT at a dose of 100 J/cmΒ² was 100%. Conclusion: This is the first report to demonstrate the benefits of sono-photodynamic therapy (SPDT) consisting of low-power density ultrasound and PDT for the treatment of malignant glioma models

    Dose enhancement effect of anticaner drugs associated with increased temperature in vitro

    No full text
    Aim: To evaluate in vitro the influence of elevated temperature (42 Β°C for 60 min) on the action of anticancer drugs doxorubicin, vinorelbine, carboplatin, ifosfamide, etoposide, oxaliplatin, docetaxel and gemcitabine. Methods: HeLa tumor cell cultures, 24 h after seeding, were incubated for 60 min with different concentrations of chemotherapeutical drugs at a temperature of 37 Β°C or 42 Β°C. 48 h later the number of viable cells in the flasks were counted using trypan-blue exclusion on a hemacytometer. Results: Hyperthermia alone caused only 10–20% growth inhibition of cell culture. All the chemotherapeutic drugs used demonstrated a dose enhancement effect at elevated temperature. Thermal enhancement ratio for cell proliferation for oxaliplatin, vinorelbine, carboplatin and ifosfamide exceeded 4, for doxorubicin and gemcitabine exceeded 2. Thermal enhancement ratio for cell death did not exceed 1.4. Conclusion: Synergism of hyperthermia and chemotherapeutical drugs was clearly demonstrated for oxaliplatin, vinorelbine, carboplatin, ifosfamide and to a lesser extent for doxorubicin and gemcitabine. Enhancement of the cytostatic effect of anticancer drugs by hyperthermia was more prominent than their cytotoxic effect.ЦСль: ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ in vitro влияниС ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ (42 Β°C Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 60 ΠΌΠΈΠ½) Π½Π° дСйствиС ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ²: доксорубицина, Π²ΠΈΠ½ΠΎΡ€Π΅Π»ΡŒΠ±ΠΈΠ½Π°, ΠΊΠ°Ρ€Π±ΠΎΠΏΠ»Π°Ρ‚ΠΈΠ½Π°, ифосфамида, этопозида, оксалиплатина, доцСтаксСла ΠΈ Π³Π΅ΠΌΡ†ΠΈΡ‚Π°Π±ΠΈΠ½Π°. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρƒ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ HeLa Ρ‡Π΅Ρ€Π΅Π· 24 Ρ‡ послС рассСва ΠΈΠ½ΠΊΡƒΠ±ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 60 ΠΌΠΈΠ½ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ концСнтрациями химиотСрапСвтичСских ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ 37 Β°C ΠΈΠ»ΠΈ 42 Β°C. Бпустя 48 Ρ‡ подсчитывали количСство ΠΆΠΈΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π²ΠΎ Ρ„Π»Π°ΠΊΠΎΠ½Π°Ρ…, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π³Π΅ΠΌΠΎΡ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ краситСля Ρ‚Ρ€ΠΈΠΏΠ°Π½ΠΎΠ²ΠΎΠ³ΠΎ синСго. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: гипСртСрмия сама ΠΏΠΎ сСбС Π²Ρ‹Π·Ρ‹Π²Π°Π»Π° 10–20% ΡƒΠ³Π½Π΅Ρ‚Π΅Π½ΠΈΠ΅ роста ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. Π£ всСх исслСдованных химиотСрапСвтичСских ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ эффСкт усилСния ΠΏΡ€ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅. ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ усилСния Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΠΈ для оксалиплатина, Π²ΠΈΠ½ΠΎΡ€Π΅Π»ΡŒΠ±ΠΈΠ½Π°, ΠΊΠ°Ρ€Π±ΠΎΠΏΠ»Π°Ρ‚ΠΈΠ½Π° ΠΈ ифосфамида прСвысил 4,0, для доксорубицина ΠΈ Π³Π΅ΠΌΡ†ΠΈΡ‚Π°Π±ΠΈΠ½Π° β€” 2,0. ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ усилСния Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π³ΠΈΠ±Π΅Π»ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π» 1,4. Π’Ρ‹Π²ΠΎΠ΄Ρ‹: синСргизм Π³ΠΈΠΏΠ΅Ρ€Ρ‚Π΅Ρ€ΠΌΠΈΠΈ ΠΈ химиотСрапСвтичСских ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² продСмонстрирован для оксалиплатина, Π²ΠΈΠ½ΠΎΡ€Π΅Π»ΡŒΠ±ΠΈΠ½Π°, ΠΊΠ°Ρ€Π±ΠΎΠΏΠ»Π°Ρ‚ΠΈΠ½Π°, ифосфамида, Π² мСньшСй стСпСни β€” для доксорубицина ΠΈ Π³Π΅ΠΌΡ†ΠΈΡ‚Π°Π±ΠΈΠ½Π°. УсилСниС цитостатичСского эффСкта ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΏΠΎΠ΄ дСйствиСм Π³ΠΈΠΏΠ΅Ρ€Ρ‚Π΅Ρ€ΠΌΠΈΠΈ Π±Ρ‹Π»ΠΎ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΌ, Ρ‡Π΅ΠΌ ΠΈΡ… цитотоксичСского эффСкта
    corecore