42 research outputs found

    Properties of two - dimensional dusty plasma clusters

    Full text link
    Two-dimensional classical cluster of particles interacting through a screened Coulomb potential is studied. This system can be used as a model for "dusty particles" in high-frequency discharge plasma. For systems consisting of N = 2 - 40 particles and confined by a harmonic potential we find ground-state configurations, eigenfrequencies and eigenvectors for the normal modes as a function of the Debye screening length R_D in plasma. Variations in R_D cause changes in the ground-state structure of clusters, each structural rearrangement can be considered as a phase transition of first or second order (with respect to parameter R_D). Monte Carlo and molecular dynamics are used to study in detail the melting of the clusters as the temperature is increased. By varying the density and the temperature of plasma, to which the particles are immersed, one can modulate thermodynamical properties of the system, transforming it in a controllable way to an ordered (crystal-like), orientationaly disordered or totally disordered (liquid-like) states. The possibility of dynamical coexistence phenomena in small clusters is discussed.Comment: 5 pages, 6 Postscript figures; to appear in Phys.Lett.

    "Shaking" of an atom in a non-stationary cavity

    Get PDF
    We consider an atom interacting with a quantized electromagnetic field inside a cavity with variable parameters. The atom in the ground state located in the initially empty cavity can be excited by variation of cavity parameters. We have discovered two mechanisms of atomic excitation. The first arises due to the interaction of the atom with the non-stationary electromagnetic field created by modulation of cavity parameters. If the characteristic time of variation of cavity parameters is of the order of the atomic transition time, the processes of photon creation and atomic excitation are going on simultaneously and hence excitation of the atom cannot be reduced to trivial absorption of the photons produced by the dynamical Casimir effect. The second mechanism is "shaking" of the atom due to fast modulation of its ground state Lamb shift which takes place as a result of fast variation of cavity arameters. The last mechanism has no connection with the vacuum dynamical Casimir effect. Moreover, it opens a new channel of photon creation in the non-stationary cavity. Nevertheless, the process of photon creation is altered by the presence of the atom in the cavity, even if one disregards the existence of the new channel. In particular, it removes the restriction for creation of only even number of photons and also changes the expectation value for the number of created photons. Our consideration is based on a simple model of a two-level atom interacting with a single mode of the cavity field. Qualitatively our results are valid for a real atom in a physical cavity.Comment: 12 pages,4 *.eps figures, this version is identical to the one to be published in Physics Letters A (in print

    Interaction potential between dynamic dipoles: polarized excitons in strong magnetic fields

    Full text link
    The interaction potential of a two-dimensional system of excitons with spatially separated electron-hole layers is considered in the strong magnetic field limit. The excitons are assumed to have free dynamics in the xx-yy plane, while being constrained or `polarized' in the zz direction. The model simulates semiconductor double layer systems under strong magnetic field normal to the layers. The {\em residual} interaction between excitons exhibits interesting features, arising from the coupling of the center-of-mass and internal degrees of freedom of the exciton in the magnetic field. This coupling induces a dynamical dipole moment proportional to the center-of-mass magnetic moment of the exciton. We show the explicit dependence of the inter-exciton potential matrix elements, and discuss the underlying physics. The unusual features of the interaction potential would be reflected in the collective response and non-equilibrium properties of such system.Comment: REVTEX - 11 pages - 1 fi

    Orientational melting of two-shell carbon nanoparticles: molecular dynamics study

    Full text link
    The energetic characteristics of two-shell carbon nanoparticles ("onions") with different shapes of second shell are calculated. The barriers of relative rotation of shells are found to be surprisingly small; therefore, free relative rotation of shells can take place at room temperature. The intershell orientational melting of the nanoparticle C60@C240C_{60}@C_{240} is studied by molecular dynamics. The parameters of Arrhenius formula for jump rotational intershell diffusion are calculated. The definition of orientational melting temperature is proposed as the temperature when the transition probability over barrier between equivalent potential minima is equal to 1/2. The temperature of orientational melting of the nanoparticle C60@C240C_{60}@C_{240} is about 60 K.Comment: 9 pages, 10 figures, some new simulation results and formulations introduce

    Theory, Simulation and Nanotechnological Applications of Adsorption on a Surface with Defects

    Get PDF
    Theory of adsorption on a surface with nanolocal defects is proposed. Two efficacy parameters of surface modification for nanotechnological purposes are introduced, where the modification is a creation of nanolocal artificial defects. The first parameter corresponds to applications where it is necessary to increase the concentration of certain particles on the modified surface. And the second one corresponds to the pattern transfer with the help of particle self-organization on the modified surface. The analytical expressions for both parameters are derived with the help of the thermodynamic and the kinetic approaches for two cases: jump diffusion and free motion of adsorbed particles over the surface. The possibility of selective adsorption of molecules is shown with the help of simulation of the adsorption of acetylene and benzene molecules in the pits on the graphite surface. The process of particle adsorption from the surface into the pit is theoretically studied by molecular dynamic technique. Some possible nanotechnological applications of adsorption on the surface with artificial defects are considered: fabrication of sensors for trace molecule detection, separation of isomers, and pattern transfer.Comment: 12 pages, 2 Postscript figures. Submitted to Surface Science (1998

    Can Barrier to Relative Sliding of Carbon Nanotube Walls Be Measured?

    Full text link
    Interwall interaction energies, as well as barriers to relative sliding of the walls along the nanotube axis, are first calculated for pairs of both armchair or both zigzag adjacent walls of carbon nanotubes with a wide range of radiuses. It is found that for the pairs with the radius of the outer wall greater than 5 nm both the interwall interaction energy and barriers to the relative sliding per one atom of the outer wall only slightly depends on the wall radius. A wide set of the measurable physical quantities determined by these barriers are estimated as a function of the wall radius: shear strengths and diffusion coefficients for relative sliding of the walls along the axis, as well as frequencies of relative axial oscillations of the walls. For nonreversible telescopic extension of the walls, maximum overlap of the walls for which threshold static friction forces are greater than capillary forces is estimated. Possibility of experimental verification of the calculated barriers by measurements of the estimated physical quantities is discussed.Comment: 16 pages, 8 figure

    Modeling of graphene-based NEMS

    Full text link
    The possibility of designing nanoelectromechanical systems (NEMS) based on relative motion or vibrations of graphene layers is analyzed. Ab initio and empirical calculations of the potential relief of interlayer interaction energy in bilayer graphene are performed. A new potential based on the density functional theory calculations with the dispersion correction is developed to reliably reproduce the potential relief of interlayer interaction energy in bilayer graphene. Telescopic oscillations and small relative vibrations of graphene layers are investigated using molecular dynamics simulations. It is shown that these vibrations are characterized with small Q-factor values. The perspectives of nanoelectromechanical systems based on relative motion or vibrations of graphene layers are discussed.Comment: 19 pages, 4 figure

    Charge transport and phase transition in exciton rings

    Full text link
    The macroscopic exciton rings observed in the photoluminescence (PL) patterns of excitons in coupled quantum wells (CQWs) are explained by a series of experiments and a theory based on the idea of carrier imbalance, transport and recombination. The rings are found to be a source of cold excitons with temperature close to that of the lattice. We explored states of excitons in the ring over a range of temperatures down to 380 mK. These studies reveal a sharp, albeit continuous, second order phase transition to a low-temperature ordered exciton state, characterized by ring fragmentation into a periodic array of aggregates. An instability at the onset of degeneracy in the cold exciton system, due to stimulated exciton formation, is proposed as the transition mechanism.Comment: 8 pages including 4 figure

    Simulation of wavepacket tunneling of interacting identical particles

    Full text link
    We demonstrate a new method of simulation of nonstationary quantum processes, considering the tunneling of two {\it interacting identical particles}, represented by wave packets. The used method of quantum molecular dynamics (WMD) is based on the Wigner representation of quantum mechanics. In the context of this method ensembles of classical trajectories are used to solve quantum Wigner-Liouville equation. These classical trajectories obey Hamilton-like equations, where the effective potential consists of the usual classical term and the quantum term, which depends on the Wigner function and its derivatives. The quantum term is calculated using local distribution of trajectories in phase space, therefore classical trajectories are not independent, contrary to classical molecular dynamics. The developed WMD method takes into account the influence of exchange and interaction between particles. The role of direct and exchange interactions in tunneling is analyzed. The tunneling times for interacting particles are calculated.Comment: 11 pages, 3 figure

    Charged vortices in superfluid systems with pairing of spatially separated carriers

    Full text link
    It is shown that in a magnetic field the vortices in superfluid electron-hole systems carry a real electrical charge. The charge value depends on the relation between the magnetic length and the Bohr radiuses of electrons and holes. In double layer systems at equal electron and hole filling factors in the case of the electron and hole Bohr radiuses much larger than the magnetic length the vortex charge is equal to the universal value (electron charge times the filling factor).Comment: 4 page
    corecore