28 research outputs found

    A geochemical model for fumaroles of the Mutnovsky volcano, Kamchatka, USSR

    No full text
    On the basis of the chemical, isotopic and thermodynamic characteristics of fluids sampled between 1964 and 1989 a genetic model description is given for fumaroles of the Mutnovsky volcano. There are three individual groups of fumaroles in the Mutnovsky crater which show stable activity for a long period of time: “the Active Funnel” (temperatures exceed 600°C), the “Upper Field” (up to 320°C) and the “Bottom Field” (from 100 to 150°C). The three principal zones of emission have different gas composition, water isotopic composition, radioactivity and 3He/4He ratios. The abundance of magmatic components in the high-temperature fumaroles of the “Active Funnel” is much higher than those in gases from the other groups. Emission rate of SO2 from the “Active Funnel” is about 200 t/d, which requires complete degassing as a minimum of 1 km3 of magma every 20 years. Fluids of the “Upper Field” contain up to 80% of steam from the Mutnovsky geothermal system. Temperature variations of the “Bottom Field” fumaroles (from 97°C before 1982 to 151°C in 1989) result from changes in hydrological conditions in the crater. Evaporation of high-saline acid brine which is formed in the interior of the volcano is responsible for the composition of the “Bottom Field” gas-steam discharges

    Chemical and isotopic composition of magmatic gases from the 1988 eruption of Klyuchevskoy volcano, Kamchatka

    Get PDF
    Gas samples have been collected at the place of magma effusion during the 1988 flank eruption of Klyuchevskoy, for the first time in the course of studies at this volcano. The high-temperature gases (1000–1100°C) are rich in water and halogens but depleted in sulphur. Their molar composition is close to chemical equilibrium at the collection temperature, while their oxidation state corresponds to redox conditions between FMO and NNO buffers. The isotopic composition of the water (δD = −71 to −44‰; δ18O = +6.3 to +8.4‰, versus SMOW) plots within the field of “primary magmatic” waters. The isotopic composition of H2 (δD = −187‰ to −160‰) is consistent with isotopic equilibrium between H2 and H2O in the conditions of emission. Both the chemistry of the gases and the low δ13C of carbon dioxide (−11.6‰, PDB) suggest extensive magma outgassing occurred during the course of the eruption

    Nizhne-Shchapinsky thermal springs (Kamchatka) as an example of magnesium CO2-rich waters

    No full text
    The results of hydrochemical studies of Nizhne-Shapinsky (Kipely) CO2-rich thermal (39 °C) springs in 2021 are presented. The springs discharge within the Shchapina graben near active Kizimen volcano. Results include macro- and trace-component composition, isotopic composition of spring water, some gas components and dissolved strontium. The results are discussed using previously published and reported data, taking into account the geological and structural setting of the area, water-rock interactions, and simple thermochemical calculations to explain the rare, but typical for the chemical composition of some CO2-rich waters, predominance of magnesium over calcium. It is shown that waters of Nizhne-Shchapinsky springs are formed as a result of mixing of two components: deeper and more heated sodium chloride water and more superficial, less heated water of Mg-Ca-HCO3- composition, formed due to interaction with carbonate-bearing rocks and CO2 of magmatic origin

    Geochemistry of magmatic gases from Kudryavy volcano, Iturup, Kuril Islands

    No full text
    Volcanic vapors were collected during 1990–1993 from the summit crater of Kudryavy, a basaltic andesite volcano on Iturup island in the Kuril arc. The highest temperature (700–940°C) fumarolic discharges are water rich (94–98 mole% H2O and have δD values of −20 to −12%o. The chemical and water isotope compositions of the vapors (temperature of thirteen samples, 940 to 130°C) show a simple trend of mixing between hot magmatic fluid and meteoric water; the magmatic parent vapor is similar in composition to altered seawater. The origin of this endmember is not known; it may be connate seawater, or possibly caused by the shallow incorporation of seawater into the magmatic-hydrothermal system. Samples of condensed vapor from 535 to 940°C fumaroles have major element trends indicating contamination by wall-rock particles. However, the enrichment factors (relative to the host rock) of many of the trace elements indicate another source; these elements likely derive from a degassing magma. The strongest temperature dependence is for Re, Mo, W, Cu, and Co; highly volatile elements such as Cl, I, F, Bi, Cd, B, and Br show little temperature dependence. The Re abundance in high-temperature condensates is 2–10 ppb, sufficient to form the pure Re sulfide recently discovered in sublimates of Kudryavy. Anomalously high I concentrations (1–12 ppm) may be caused by magma-marine sediment interaction, as Br/I ratios are similar to those in marine sediments. The high-temperature (>700°C) fumaroles have a relatively constant composition (∼2 mol% each C and S species, with SO2/H2S ratio of about 3:1, and 0.5 mol% HCl); as temperature decreases, both St and CI are depleted, most likely due to formation of native S and HCl absorption by condensed liquid, in addition to the dilution by meteoric water. Thermochemical evaluation of the high-temperature gas compositions indicates they are close to equilibrium mixtures, apart from minor loss of H2O and oxidation of CO and H2 during sampling. Calculation to an assumed equilibrium state indicates temperatures from 705 to 987°C. At high temperature (≈900°C), the redox states are close to the overlap of mineral (quartz-fayalite-magnetite and nickel-nickel oxide) and gas (H2OH2SO2H2S) buffer curves, due to heterogeneous reaction between the melt and gas species. At lower temperatures (<800°C), the trend of the redox state is similar to the gas buffer curve, probably caused by homogeneous reaction among gas species in a closed system during vapor ascent
    corecore