52 research outputs found

    Self-induced and induced transparencies of two-dimensional and three- dimensional superlattices

    Full text link
    The phenomenon of transparency in two-dimensional and three-dimensional superlattices is analyzed on the basis of the Boltzmann equation with a collision term encompassing three distinct scattering mechanisms (elastic, inelastic and electron-electron) in terms of three corresponding distinct relaxation times. On this basis, we show that electron heating in the plane perpendicular to the current direction drastically changes the conditions for the occurrence of self-induced transparency in the superlattice. In particular, it leads to an additional modulation of the current amplitudes excited by an applied biharmonic electric field with harmonic components polarized in orthogonal directions. Furthermore, we show that self-induced transparency and dynamic localization are different phenomena with different physical origins, displaced in time from each other, and, in general, they arise at different electric fields.Comment: to appear in Physical Review

    Toda Lattice Hierarchy and Generalized String Equations

    Get PDF
    String equations of the pp-th generalized Kontsevich model and the compactified c=1c = 1 string theory are re-examined in the language of the Toda lattice hierarchy. As opposed to a hypothesis postulated in the literature, the generalized Kontsevich model at p=1p = -1 does not coincide with the c=1c = 1 string theory at self-dual radius. A broader family of solutions of the Toda lattice hierarchy including these models are constructed, and shown to satisfy generalized string equations. The status of a variety of c1c \le 1 string models is discussed in this new framework.Comment: 35pages, LaTeX Errors are corrected in Eqs. (2.21), (2.36), (2.33), (3.3), (5.10), (6.1), sentences after (3.19) and theorem 5. A few references are update

    New precise determination of the \tau lepton mass at KEDR detector

    Full text link
    The status of the experiment on the precise τ\tau lepton mass measurement running at the VEPP-4M collider with the KEDR detector is reported. The mass value is evaluated from the τ+τ\tau^+\tau^- cross section behaviour around the production threshold. The preliminary result based on 6.7 pb1^{-1} of data is mτ=1776.800.23+0.25±0.15m_{\tau}=1776.80^{+0.25}_{-0.23} \pm 0.15 MeV. Using 0.8 pb1^{-1} of data collected at the ψ\psi' peak the preliminary result is also obtained: ΓeeBττ(ψ)=7.2±2.1\Gamma_{ee}B_{\tau\tau}(\psi') = 7.2 \pm 2.1 eV.Comment: 6 pages, 8 figures; The 9th International Workshop on Tau-Lepton Physics, Tau0

    Measurement of \Gamma_{ee}(J/\psi)*Br(J/\psi->e^+e^-) and \Gamma_{ee}(J/\psi)*Br(J/\psi->\mu^+\mu^-)

    Get PDF
    The products of the electron width of the J/\psi meson and the branching fraction of its decays to the lepton pairs were measured using data from the KEDR experiment at the VEPP-4M electron-positron collider. The results are \Gamma_{ee}(J/\psi)*Br(J/\psi->e^+e^-)=(0.3323\pm0.0064\pm0.0048) keV, \Gamma_{ee}(J/\psi)*Br(J/\psi->\mu^+\mu^-)=(0.3318\pm0.0052\pm0.0063) keV. Their combinations \Gamma_{ee}\times(\Gamma_{ee}+\Gamma_{\mu\mu})/\Gamma=(0.6641\pm0.0082\pm0.0100) keV, \Gamma_{ee}/\Gamma_{\mu\mu}=1.002\pm0.021\pm0.013 can be used to improve theaccuracy of the leptonic and full widths and test leptonic universality. Assuming e\mu universality and using the world average value of the lepton branching fraction, we also determine the leptonic \Gamma_{ll}=5.59\pm0.12 keV and total \Gamma=94.1\pm2.7 keV widths of the J/\psi meson.Comment: 7 pages, 6 figure

    Search for narrow resonances in e+ e- annihilation between 1.85 and 3.1 GeV with the KEDR Detector

    Full text link
    We report results of a search for narrow resonances in e+ e- annihilation at center-of-mass energies between 1.85 and 3.1 GeV performed with the KEDR detector at the VEPP-4M e+ e- collider. The upper limit on the leptonic width of a narrow resonance Gamma(R -> ee) Br(R -> hadr) < 120 eV has been obtained (at 90 % C.L.)

    Measurement of main parameters of the \psi(2S) resonance

    Get PDF
    A high-precision determination of the main parameters of the \psi(2S) resonance has been performed with the KEDR detector at the VEPP-4M e^{+}e^{-} collider in three scans of the \psi(2S) -- \psi(3770) energy range. Fitting the energy dependence of the multihadron cross section in the vicinity of the \psi(2S) we obtained the mass value M = 3686.114 +- 0.007 +- 0.011 ^{+0.002}_{-0.012} MeV and the product of the electron partial width by the branching fraction into hadrons \Gamma_{ee}*B_{h} = 2.233 +- 0.015 +- 0.037 +- 0.020 keV. The third error quoted is an estimate of the model dependence of the result due to assumptions on the interference effects in the cross section of the single-photon e^{+}e^{-} annihilation to hadrons explicitly considered in this work. Implicitly, the same assumptions were employed to obtain the charmonium leptonic width and the absolute branching fractions in many experiments. Using the result presented and the world average values of the electron and hadron branching fractions, one obtains the electron partial width and the total width of the \psi(2S): \Gamma_{ee} =2.282 +- 0.015 +- 0.038 +- 0.021 keV, \Gamma = 296 +- 2 +- 8 +- 3 keV. These results are consistent with and more than two times more precise than any of the previous experiments
    corecore