859 research outputs found
Production of high energy particles in laser and Coulomb fields and e^+e^- antenna
A strong laser field and the Coulomb field of a nucleus can produce
e^{+}e^{-} pairs. It is shown for the first time that there is a large
probability that electrons and positrons created in this process collide after
one or several oscillations of the laser field. These collisions can take place
at high energy resulting in several phenomena. The quasielastic collision
e^{+}e^{-} -> e^{+}e^{-} allows acceleration of leptons in the laser field to
higher energies. The inelastic collisions allow production of high energy
photons e^{+}e^{-}-> 2 gamma and muons, e^{+}e^{-} -> mu^{+}mu^{-}. The yield
of high-energy photons and muons produced via this mechanism exceeds
exponentially their production through conventional direct creation in laser
and Coulomb fields. A relation of the phenomena considered with the
antenna-mechanism of multiphoton absorption in atoms is discussed.Comment: 4 page
Quantum Interference Controls the Electron Spin Dynamics in n-GaAs
Manifestations of quantum interference effects in macroscopic objects are
rare. Weak localization is one of the few examples of such effects showing up
in the electron transport through solid state. Here we show that weak
localization becomes prominent also in optical spectroscopy via detection of
the electron spin dynamics. In particular, we find that weak localization
controls the free electron spin relaxation in semiconductors at low
temperatures and weak magnetic fields by slowing it down by almost a factor of
two in -doped GaAs in the metallic phase. The weak localization effect on
the spin relaxation is suppressed by moderate magnetic fields of about 1 T,
which destroy the interference of electron trajectories, and by increasing the
temperature. The weak localization suppression causes an anomalous decrease of
the longitudinal electron spin relaxation time with magnetic field, in
stark contrast with well-known magnetic field induced increase in . This
is consistent with transport measurements which show the same variation of
resistivity with magnetic field. Our discovery opens a vast playground to
explore quantum magneto-transport effects optically in the spin dynamics.Comment: 8 pages, 3 figure
Experimental studies of thorium ions implantation from pulse laser plasma into thin silicon oxide layers
We report the results of experimental studies related to implantation of
thorium ions into thin silicon dioxide by pulsed plasma fluxes expansion.
Thorium ions were generated by laser ablation from a metal target, and the
ionic component of the laser plasma was accelerated in an electric field
created by the potential difference (5, 10 and 15 kV) between the ablated
target and SiO2/Si(001) sample. Laser ablation system installed inside the
vacuum chamber of the electron spectrometer was equipped with YAG:Nd3+ laser
having the pulse energy of 100 mJ and time duration of 15 ns in the Q-switched
regime. Depth profile of thorium atoms implanted into the 10 nm thick
subsurface areas together with their chemical state as well as the band gap of
the modified silicon oxide at different conditions of implantation processes
were studied by means of X-ray photoelectron spectroscopy (XPS) and Reflected
Electron Energy Loss Spectroscopy (REELS) methods. Analysis of chemical
composition showed that the modified silicon oxide film contains complex
thorium silicates. Depending on local concentration of thorium atoms, the
experimentally established band gaps were located in the range of 6.0 - 9.0 eV.
Theoretical studies of optical properties of the SiO2 and ThO2 crystalline
systems have been performed by ab initio calculations within hybrid functional.
Optical properties of the SiO2/ThO2 composite were interpreted on the basis of
Bruggeman effective medium approximation. A quantitative assessment of the
yield of isomeric nuclei in "hot" laser plasma at the early stages of expansion
has been performed. The estimates made with experimental results demonstrated
that the laser implantation of thorium ions into the SiO2 matrix can be useful
for further research of low-lying isomeric transitions in 229Th isotope with
energy of 7.8(0.5) eV
Optical orientation and alignment of excitons in direct and indirect band gap (In,Al)As/AlAs quantum dots with type-I band alignment
The spin structure and spin dynamics of excitons in an ensemble of
(In,Al)As/AlAs quantum dots (QDs) with type-I band alignment, containing both
direct and indirect band gap dots, are studied. Time-resolved and spectral
selective techniques are used to distinguish between the direct and indirect
QDs. The exciton fine structure is studied by means of optical alignment and
optical orientation techniques in magnetic fields applied in the Faraday or
Voigt geometries. A drastic difference in emission polarization is found for
the excitons in the direct QDs involving a -valley electron and the
excitons in the indirect QDs contributed by an -valley electron. We show
that in the direct QDs the exciton spin dynamics is controlled by the
anisotropic exchange splitting, while in the indirect QDs it is determined by
the hyperfine interaction with nuclear field fluctuations. The anisotropic
exchange splitting is determined for the direct QD excitons and compared with
model calculations
Optical orientation and alignment of excitons in direct and indirect band gap (In,Al)As/AlAs quantum dots with type-I band alignment
The spin structure and spin dynamics of excitons in an ensemble of
(In,Al)As/AlAs quantum dots (QDs) with type-I band alignment, containing both
direct and indirect band gap dots, are studied. Time-resolved and spectral
selective techniques are used to distinguish between the direct and indirect
QDs. The exciton fine structure is studied by means of optical alignment and
optical orientation techniques in magnetic fields applied in the Faraday or
Voigt geometries. A drastic difference in emission polarization is found for
the excitons in the direct QDs involving a -valley electron and the
excitons in the indirect QDs contributed by an -valley electron. We show
that in the direct QDs the exciton spin dynamics is controlled by the
anisotropic exchange splitting, while in the indirect QDs it is determined by
the hyperfine interaction with nuclear field fluctuations. The anisotropic
exchange splitting is determined for the direct QD excitons and compared with
model calculations
On the angular distribution of extensive air showers
Angular distributions of extensive air showers with different number of
charged particles in the range 2.5x10^5--4x10^7 are derived using the
experimental data obtained with the EAS MSU array. Possible approximations of
the obtained distributions with different empiric functions available in
literature, are analysed. It is shown that the exponential function provides
the best approximation of the angular distributions in the sense of the
chi-squared criterion.Comment: 5 pages including 1 figur
- …