3,308 research outputs found
On the low-temperature performances of THGEM and THGEM/G-APD multipliers in gaseous and two-phase Xe
The performances of THGEM multipliers in two-phase Xe avalanche mode are
presented for the first time. Additional results on THGEM operation in gaseous
Xe at cryogenic temperatures are provided. Stable operation of a double-THGEM
multiplier was demonstrated in two-phase Xe with gains reaching 600. These are
compared to existing data, summarized here for two-phase Ar, Kr and Xe
avalanche detectors incorporating GEM and THGEM multipliers. The optical
readout of THGEMs with Geiger-mode Avalanche Photodiodes (G-APDs) has been
investigated in gaseous Xe at cryogenic temperature; avalanche scintillations
were recorded in the Near Infrared (NIR) at wavelengths of up to 950 nm. At
avalanche charge gain of 350, the double-THGEM/G-APD multiplier yielded 0.07
photoelectrons per initial ionization electron, corresponding to an avalanche
scintillation yield of 0.7 NIR photons per avalanche electron over 4pi. The
results are compared with those of two-phase Ar avalanche detectors. The
advantages, limitations and possible applications are discussed.Comment: 22 pages, 14 figures. Revised Figs. 10,11 and Table 1. To be
published in JINS
Electroproduction, photoproduction, and inverse electroproduction of pions in the first resonance region
Methods are set forth for determining the hadron electromagnetic structure in
the sub--threshold timelike region of the virtual-photon ``mass'' and
for investigating the nucleon weak structure in the spacelike region from
experimental data on the process at low energies. These
methods are formulated using the unified description of photoproduction,
electroproduction, and inverse electroproduction of pions in the first
resonance region in the framework of the dispersion-relation model and on the
basis of the model-independent properties of inverse electroproduction.
Applications of these methods are also shown.Comment: The revised published version; Revtex4, 18 pages, 6 figure
Sound and Heat Absorption by a 2D Electron Gas in an Odd-Integer Quantized-Hall Regime
The absorption of bulk acoustic phonons in a two-dimensional (2D) GaAs/AlGaAs
heterostructure is studied (in the clean limit) where the 2D electron-gas
(2DEG), being in an odd-integer quantum-Hall state, is in fact a spin
dielectric. Of the two channels of phonon absorption associated with excitation
of spin waves, one, which is due to the spin-orbit (SO) coupling of electrons,
involves a change of the spin state of the system and the other does not. We
show that the phonon-absorption rate corresponding to the former channel (in
the paper designated as the second absorption channel) is finite at zero
temperature (), whereas that corresponding to the latter (designated as the
first channel) vanishes for . The long-wavelength limit, being the
special case of the first absorption channel, corresponds to sound (bulk and
surface) attenuation by the 2DEG. At the same time, the ballistic phonon
propagation and heat absorption are determined by both channels. The 2DEG
overheat and the attendant spin-state change are found under the conditions of
permanent nonequilibrium phonon pumping.Comment: 26 pages, 2 figure
- …