73 research outputs found

    Decay rate of the excited surface electron states on liquid helium

    Get PDF
    The low temperature bound of the decay rate of the excited surface electron states on liquid helium is theoretically studied. It is shown that the lifetime and dephasing time of the surface electron states are strongly limited by spontaneous emission of couples of short-wavelength capillary wave quanta (ripplons). These two-ripplon scattering processes are of the second order in the nonlinear interaction Hamiltonian. In contrast to the usual one-ripplon scattering contribution, the decay rate found here cannot be substantially reduced neither by lowering temperature nor by external magnetic field, which is important for recently discussed implementation of quantum bits in such a system

    Density domains of a photo-excited electron gas on liquid helium

    Get PDF
    The Coulombic effect on the stability range of the photo-excited electron gas on liquid helium is shown to favor formation of domains of different densities. Domains appear to eliminate or greatly reduce regions with negative conductivity. An analysis of the density domain structure allows explaining remarkable observations reported recently for the photo-excited electron gas.Comment: 5 pages, 5 figure

    Circular-Polarization-Dependent Study of Microwave-Induced Conductivity Oscillations in a Two-Dimensional Electron Gas on Liquid Helium

    Get PDF
    The polarization dependence of photoconductivity response at cyclotron-resonance harmonics in a nondegenerate two-dimensional (2D) electron system formed on the surface of liquid helium is studied using a setup in which a circular polarization of opposite directions can be produced. Contrary to the results of similar investigations reported for semiconductor 2D electron systems, for electrons on liquid helium, a strong dependence of the amplitude of magnetoconductivity oscillations on the direction of circular polarization is observed. This observation is in accordance with theoretical models based on photon-assisted scattering and, therefore, it solves a critical issue in the dispute over the origin of microwave-induced conductivity oscillations.Comment: 5 pages, 4 figure

    Photon-induced vanishing of magnetoconductance in 2D electrons on liquid He

    Full text link
    We report on a novel transport phenomenon realized by optical pumping in surface state electrons on helium subjected to perpendicular magnetic fields. The electron dynamics is governed by the photon-induced excitation and scattering-mediated transitions between electric subbands. In a range of magnetic fields, we observe vanishing longitudinal conductivity sigma_xx. Our result suggests the existence of radiation-induced zero-resistance states in the nondegenerate 2D electron system.Comment: 4 pages, 5 figure

    Microwave-resonance-induced magnetooscillations and vanishing resistance states in multisubband two-dimensional electron systems

    Get PDF
    The dc magnetoconductivity of the multisubband two-dimensional electron system formed on the liquid helium surface in the presence of resonant microwave irradiation is described, and a new mechanism of the negative linear response conductivity is studied using the self-consistent Born approximation. Two kinds of scatterers (vapor atoms and capillary wave quanta) are considered. Besides a conductivity modulation expected near the points, where the excitation frequency for inter-subband transitions is commensurate with the cyclotron frequency, a sign-changing correction to the linear conductivity is shown to appear for usual quasi-elastic inter-subband scattering, if the collision broadening of Landau levels is much smaller than thermal energy. The decay heating of the electron system near the commensurability points leads to magnetooscillations of electron temperature, which are shown to increase the importance of the sign-changing correction. The line shape of magnetoconductivity oscillations calculated for wide ranges of temperature and magnetic field is in a good accordance with experimental observations.Comment: 13 pages, 8 figure
    corecore