10,209 research outputs found

    Wigner-Eckart theorem for tensor operators of Hopf algebras

    Full text link
    We prove Wigner-Eckart theorem for the irreducible tensor operators for arbitrary Hopf algebras, provided that tensor product of their irreducible representation is completely reducible. The proof is based on the properties of the irreducible representations of Hopf algebras, in particular on Schur lemma. Two classes of tensor operators for the Hopf algebra Ut_{t}(su(2)) are considered. The reduced matrix elements for the class of irreducible tensor operators are calculated. A construction of some elements of the center of Ut_{t}(su(2)) is given.Comment: 14 pages, late

    Describing neutrino oscillations in matter with Magnus expansion

    Full text link
    We present new formalism for description of the neutrino oscillations in matter with varying density. The formalism is based on the Magnus expansion and has a virtue that the unitarity of the S-matrix is maintained in each order of perturbation theory. We show that the Magnus expansion provides better convergence of series: the restoration of unitarity leads to smaller deviations from the exact results especially in the regions of large transition probabilities. Various expansions are obtained depending on a basis of neutrino states and a way one splits the Hamiltonian into the self-commuting and non-commuting parts. In particular, we develop the Magnus expansion for the adiabatic perturbation theory which gives the best approximation. We apply the formalism to the neutrino oscillations in matter of the Earth and show that for the solar oscillation parameters the second order Magnus adiabatic expansion has better than 1% accuracy for all energies and trajectories. For the atmospheric Δm2\Delta m^2 and small 1-3 mixing the approximation works well (<3< 3 % accuracy for sin2θ13=0.01\sin^2 \theta_{13} = 0.01) outside the resonance region (2.7 - 8) GeV.Comment: Discussions expanded, two figures and references added, the version will appear in Nucl. Phys.

    Attenuation effect and neutrino oscillation tomography

    Full text link
    Attenuation effect is the effect of weakening of contributions to the oscillation signal from remote structures of matter density profile. The effect is a consequence of integration over the neutrino energy within the energy resolution interval. Structures of a density profile situated at distances larger than the attenuation length, λatt\lambda_{att}, are not "seen". We show that the origins of attenuation are (i) averaging of oscillations in certain layer(s) of matter, (ii) smallness of matter effect: ϵ2EV/Δm21\epsilon \equiv 2EV/\Delta m^2 \ll 1, where VV is the matter potential, and (iii) specific initial and final states on neutrinos. We elaborate on the graphic description of the attenuation which allows us to compute explicitly the effects in the ϵ2\epsilon^2 order for various density profiles and oscillation channels. The attenuation in the case of partial averaging is described. The effect is crucial for interpretation of oscillation data and for the oscillation tomography of the Earth with low energy (solar, supernova, atmospheric, {\it etc.}) neutrinos.Comment: 24 pages, 8 figures, typos corrected, more explanations adde

    Solar neutrinos: global analysis and implications for SNO

    Full text link
    We present a global analysis of all the available solar neutrino data treating consistently the 8B and hep neutrino fluxes as free parameters. The analysis reveals at 99.7% C.L. eight currently-allowed discrete regions in two-neutrino oscillation space, five regions corresponding to active neutrinos and three corresponding to sterile neutrinos. Most of the allowed solutions are robust with respect to changes in the analysis procedure, but the traditional vacuum solution is fragile. The globally-permitted range of the 8B neutrino flux, 0.45 to 1.95 in units of the BP2000 flux, is comparable to the 3 sigma range allowed by the standard solar model. We discuss the implications for SNO of a low mass, Delta m^2 ~ 6 times 10^{-12} eV^2, vacuum oscillation solution, previously found by Raghavan, and by Krastev and Petcov, but absent in recent analyses that included Super-Kamiokande data. For the SNO experiment, we present refined predictions for the charged-current rate and the ratio of the neutral-current rate to charged-current rate. The predicted charged-current rate can be clearly distinguished from the no-oscillation rate only for the LMA solution. The predicted ratio of the neutral-current rate to charged-current rate is distinguishable from the no-oscillation ratio for the LMA, SMA, LOW, and VAC solutions for active neutrinos.Comment: viewgraphs and related material at http://www.sns.ias.ed

    On a general analytical formula for U_q(su(3))-Clebsch-Gordan coefficients

    Full text link
    We present the projection operator method in combination with the Wigner-Racah calculus of the subalgebra U_q(su(2)) for calculation of Clebsch-Gordan coefficients (CGCs) of the quantum algebra U_q(su(3)). The key formulas of the method are couplings of the tensor and projection operators and also a tensor form for the projection operator of U_q(su(3)). We obtain a very compact general analytical formula for the U_q(su(3)) CGCs in terms of the U_q(su(2)) Wigner 3nj-symbols.Comment: 9 pages, LaTeX; to be published in Yad. Fiz. (Phys. Atomic Nuclei), (2001

    q-Analog of Gelfand-Graev Basis for the Noncompact Quantum Algebra U_q(u(n,1))

    Full text link
    For the quantum algebra U_q(gl(n+1)) in its reduction on the subalgebra U_q(gl(n)) an explicit description of a Mickelsson-Zhelobenko reduction Z-algebra Z_q(gl(n+1),gl(n)) is given in terms of the generators and their defining relations. Using this Z-algebra we describe Hermitian irreducible representations of a discrete series for the noncompact quantum algebra U_q(u(n,1)) which is a real form of U_q(gl(n+1)), namely, an orthonormal Gelfand-Graev basis is constructed in an explicit form.Comment: Invited talk given by V.N.T. at XVIII International Colloquium "Integrable Systems and Quantum Symmetries", June 18--20, 2009, Prague, Czech Republi
    corecore