495 research outputs found

    Modulated electronic configurations in selectively doped multilayered nanostructures

    Full text link
    A simple theoretical model is proposed to describe the recent experimental results on formation of induced superconducting state and anomalous tunneling characteristics in selectively doped multilayered nanostructures based on La2_2CuO4_4 perovskite. In particular, it is shown that the structure composed from the nominally non-superconducting (undoped and overdoped) layers turns to be superconducting with superconductivity confined to narrow regions near the interfaces, in agreement with the experimental observations.Comment: 4 pages, 4 figures, revte

    Formation of d-wave superconducting order in a randomly doped lattice

    Full text link
    We consider the interplay between superconducting coupling and dopant impurity scattering of charge carriers in planar square lattice systems and examine physical conditions (doping level, temperature, local symmetry of coupling and scattering potentials) necessary in this model system to obtain a d-wave superconducting order, like that observed in real doped cuprate HTSC materials. Using the Lifshitz model for the disorder introduced into system by dopants, we analyze also the non-uniform structure of such d-wave parameter, including both its magnitude and phase variation. The results indicate that d-wave superconductivity turns possible in a doped metal until it can be destroyed at too high doping levels.Comment: 22 pages, 2 figure

    Magnetoresistance of Highly Correlated Electron Liquid

    Full text link
    The behavior in magnetic fields of a highly correlated electron liquid approaching the fermion condensation quantum phase transition from the disordered phase is considered. We show that at sufficiently high temperatures TT(x)T\geq T^*(x) the effective mass starts to depend on TT, MT1/2M^*\propto T^{-1/2}. This T1/2T^{-1/2} dependence of the effective mass at elevated temperatures leads to the non-Fermi liquid behavior of the resistivity, ρ(T)T\rho(T)\propto T and at higher temperatures ρ(T)T3/2\rho(T)\propto T^{3/2}. The application of a magnetic field BB restores the common T2T^2 behavior of the resistivity. The effective mass depends on the magnetic field, M(B)B2/3M^*(B)\propto B^{-2/3}, being approximately independent of the temperature at TT(B)B4/3T\leq T^*(B)\propto B^{4/3}. At TT(B)T\geq T^*(B), the T1/2T^{-1/2} dependence of the effective mass is re-established. We demonstrate that this BTB-T phase diagram has a strong impact on the magnetoresistance (MR) of the highly correlated electron liquid. The MR as a function of the temperature exhibits a transition from the negative values of MR at T0T\to 0 to the positive values at TB4/3T\propto B^{4/3}. Thus, at TT(B)T\geq T^*(B), MR as a function of the temperature possesses a node at TB4/3T\propto B^{4/3}.Comment: 7 pages, revtex, no figure

    Mass Transfer Mechanism in Real Crystals by Pulsed Laser Irradiation

    Full text link
    The dynamic processes in the surface layers of metals subjected activity of a pulsing laser irradiation, which destroyed not the crystalline structure in details surveyed. The procedure of calculation of a dislocation density generated in bulk of metal during the relaxation processes and at repeated pulse laser action is presented. The results of evaluations coincide with high accuracy with transmission electron microscopy dates. The dislocation-interstitial mechanism of laser-stimulated mass-transfer in real crystals is presented on the basis of the ideas of the interaction of structure defects in dynamically deforming medium. The good compliance of theoretical and experimental results approves a defining role of the presented mechanism of mass transfer at pulse laser action on metals. The possible implementation this dislocation-interstitial mechanism of mass transfer in metals to other cases of pulsing influences is justifiedComment: 10 pages, 2 figures, Late

    Ground state instability in systems of strongly interacting fermions

    Full text link
    We analyze stability of a fermion system with model repulsive pair interaction potential. The possibility for different types of restructuring of the Fermi ground state (at sufficiently great coupling constant) is related to the analytic properties of such potential. In particular, for the screened Coulomb law it is shown that the restructuring cannot be of the Fermi condensation type, known earlier for some exactly solvable models, and instead it belongs to the class of topological transitions (TT). For this model, a phase diagram has been built in the variables "screening parameter - coupling constant" which displays two kinds of TT: a 5/2-kind similar to the known Lifshitz transitions in metals, and a 2-kind characteristic for a uniform strongly interacting system.Comment: The article has 11 pages, in Latex 2e (from Lyx), 3 eps figures or a ps fil

    Universal Behavior of Heavy-Fermion Metals Near a Quantum Critical Point

    Full text link
    The behavior of the electronic system of heavy fermion metals is considered. We show that there exist at least two main types of the behavior when the system is nearby a quantum critical point which can be identified as the fermion condensation quantum phase transition (FCQPT). We show that the first type is represented by the behavior of a highly correlated Fermi-liquid, while the second type is depicted by the behavior of a strongly correlated Fermi-liquid. If the system approaches FCQPT from the disordered phase, it can be viewed as a highly correlated Fermi-liquid which at low temperatures exhibits the behavior of Landau Fermi liquid (LFL). At higher temperatures TT, it demonstrates the non-Fermi liquid (NFL) behavior which can be converted into the LFL behavior by the application of magnetic fields BB. If the system has undergone FCQPT, it can be considered as a strongly correlated Fermi-liquid which demonstrates the NFL behavior even at low temperatures. It can be turned into LFL by applying magnetic fields BB. We show that the effective mass MM^* diverges at the very point that the N\'eel temperature goes to zero. The BTB-T phase diagrams of both liquids are studied. We demonstrate that these BTB-T phase diagrams have a strong impact on the main properties of heavy-fermion metals such as the magnetoresistance, resistivity, specific heat, magnetization, volume thermal expansion, etc.Comment: Revtex, 11 pages, revised and accepted by JETP Let

    Quasiparticles in the Superconducting State of High-T_c Metals

    Full text link
    We consider the behavior of quasiparticles in the superconducting state of high-T_c metals within the framework of the theory of superconducting state based on the fermion condensation quantum phase transition. We show that the behavior coincides with the behavior of Bogoliubov quasiparticles, whereas the maximum value of the superconducting gap and other exotic properties are determined by the presence of the fermion condensate. If at low temperatures the normal state is recovered by the application of a magnetic field suppressing the superconductivity, the induced state can be viewed as Landau Fermi liquid. These observations are in good agreement with recent experimental facts.Comment: 8 pages, Revte

    Behavior of Fermi Systems Approaching Fermion Condensation Quantum Phase Transition from Disordered Phase

    Full text link
    The behavior of Fermi systems which approach the fermion condensation quantum phase transition (FCQPT) from the disordered phase is considered. We show that the quasiparticle effective mass MM^* diverges as M1/xxFCM^*\propto 1/|x-x_{FC}| where xx is the system density and xFCx_{FC} is the critical point at which FCQPT occurs. Such a behavior is of general form and takes place in both three dimensional (3D) systems and two dimensional (2D) ones. Since the effective mass MM^* is finite, the system exhibits the Landau Fermi liquid behavior. At xxFC/xFC1|x-x_{FC}|/x_{FC}\ll 1, the behavior can be viewed as a highly correlated one, because the effective mass is large and strongly depends on the density. In case of electronic systems the Wiedemann-Franz law is held and Kadowaki-Woods ratio is preserved. Beyond the region xxFC/xFC1|x-x_{FC}|/x_{FC}\ll 1, the effective mass is approximately constant and the system becomes conventional Landau Fermi liquid.Comment: 9 pages, revtex, no figure

    Influence of a low magnetic field on the thermal diffusivity of Bi-2212

    Full text link
    The thermal diffusivity of a Bi-2212 polycrystalline sample has been measured under a 1T magnetic field applied perpendicularly to the heat flux. The magnetic contribution to the heat carrier mean free path has been extracted and is found to behave as a simple power law. This behavior can be attributed to a percolation process of electrons in the vortex lattice created by the magnetic field.Comment: 10 pages, 3 figures; to be published in Phys. Rev.
    corecore