6,739 research outputs found

    Changes of Granite Rapakivi under the Biofouling Influence

    Get PDF
    Interdisciplinary study of granite rapakivi biofouling in the natural and anthropogenic environment (St. Petersburg, Vyborg, Southern Finland) was carried out. The biodiversity of microorganisms (cyanobacteria, micromycetes, and organotrophic bacteria) and various types of biofilms are characterized. The influence of external factors on the changes of cyanobacterial biofilms is shown. The features of biofilms localization on the granite surface in an urban environment and in natural outcrops are studied. Differences in the biofilms metabolites composition at the granite quarries and monuments of St. Petersburg are shown. The behavior of chemical elements during the bioweathering of granite is estimated. The role of biofilms in the accumulation of chemical elements on the surface of granite is established. The dynamics of chemical elements leaching from granite may depend on the type of biofilm developing on granite

    Investigation of contamination caused by rubber compactor in arsine purified in gas centrifuge

    Get PDF
    In the process of studying the application of gas centrifuges for deep purification of arsine from impurities sulphur was found. Estimation of quantitative content of sulphur in pure arsine showed the value -10-4 wt. %. The sources of sulphur was stated to be rubber compactors forming gas centrifuge complex and made from rubber on the basis of butadiene_nitrile caoutchouc using sulfur cure. Using rubber compactors made from rubber produced from fluoroelastomers, not undergoing to sulfur cure one can provide sulphur content in pure product less than 10-5 wt. %

    Radiation-induced hydrogen transfer in metals

    Get PDF
    The paper presents processes of hydrogen (deuterium) diffusion and release from hydrogen-saturated condensed matters in atomic, molecular and ionized states under the influence of the electron beam and X-ray radiation in the pre-threshold region. The dependence is described between the hydrogen isotope release intensity and the current density and the electron beam energy affecting sample, hydrogen concentration in the material volume and time of radiation exposure to the sample. The energy distribution of the emitted positive ions of hydrogen isotopes is investigated herein. Mechanisms of radiation-induced hydrogen transfer in condensed matters are suggested

    Electronic correlations on a metallic nanosphere

    Full text link
    We consider the correlation functions in a gas of electrons moving within a thin layer on the surface of nanosize sphere. A closed form of expressions for the RKKY indirect exchange, superconducting Cooper loop and `density-density' correlation function is obtained. The systematic comparison with planar results is made, the effects of spherical geometry are outlined. The quantum coherence of electrons leads to the enhancement of all correlations for the points--antipodes on the sphere. This effect is lost when the radius of the sphere exceeds the temperature coherence length.Comment: 5 pages, no figures, to appear in PRB (RC

    Joule heating effects on quartz particle melting in high-temperature silicate melt

    Get PDF
    This work is mostly focused on the melting process model simulation of quartz particles having the radius within the range of 10{-6}-10{-3} m. The melting process is simulated accounting for the heat generation at an electric current passage through a quartz particle

    A simple formula for the L-gap width of a face-centered-cubic photonic crystal

    Get PDF
    The width L\triangle_L of the first Bragg's scattering peak in the (111) direction of a face-centered-cubic lattice of air spheres can be well approximated by a simple formula which only involves the volume averaged ϵ\epsilon and ϵ2\epsilon^2 over the lattice unit cell, ϵ\epsilon being the (position dependent) dielectric constant of the medium, and the effective dielectric constant ϵeff\epsilon_{eff} in the long-wavelength limit approximated by Maxwell-Garnett's formula. Apparently, our formula describes the asymptotic behaviour of the absolute gap width L\triangle_L for high dielectric contrast δ\delta exactly. The standard deviation σ\sigma steadily decreases well below 1% as δ\delta increases. For example σ<0.1\sigma< 0.1% for the sphere filling fraction f=0.2f=0.2 and δ20\delta\geq 20. On the interval δ(1,100)\delta\in(1,100), our formula still approximates the absolute gap width L\triangle_L (the relative gap width Lr\triangle_L^r) with a reasonable precision, namely with a standard deviation 3% (4.2%) for low filling fractions up to 6.5% (8%) for the close-packed case. Differences between the case of air spheres in a dielectric and dielectric spheres in air are briefly discussed.Comment: 13 pages, 4 figs., RevTex, two references added. For more info see http://www.amolf.nl/external/wwwlab/atoms/theory/index.htm

    Collapse dynamics of trapped Bose-Einstein condensates

    Full text link
    We analyze the implosion and subsequent explosion of a trapped condensate after the scattering length is switched to a negative value. Our results compare very well qualitatively and fairly well quantitatively with the results of recent experiments at JILA.Comment: 4 pages, 3 figure

    Resonance-Induced Effects in Photonic Crystals

    Get PDF
    For the case of a simple face-centered-cubic photonic crystal of homogeneous dielectric spheres, we examine to what extent single-sphere Mie resonance frequencies are related to band gaps and whether the width of a gap can be enlarged due to nearby resonances. Contrary to some suggestions, no spectacular effects may be expected. When the dielectric constant of the spheres ϵs\epsilon_s is greater than the dielectric constant ϵb\epsilon_b of the background medium, then for any filling fraction ff there exists a critical ϵc\epsilon_c above which the lowest lying Mie resonance frequency falls inside the lowest stop gap in the (111) crystal direction, close to its midgap frequency. If ϵs<ϵb\epsilon_s <\epsilon_b, the correspondence between Mie resonances and both the (111) stop gap and a full gap does not follow such a regular pattern. If the Mie resonance frequency is close to a gap edge, one can observe a resonance-induced widening of a relative gap width by 5\approx 5%.Comment: 14 pages, 3 figs., RevTex. For more info look at http://www.amolf.nl/external/wwwlab/atoms/theory/index.htm

    Anomalous Coherent Backscattering of Light from Opal Photonic Crystals

    Full text link
    We studied coherent backscattering (CBS) of light from opal photonic crystals in air at different incident inclination angles, wavelengths and along various [hkl] directions inside the opals. Similar to previously obtained CBS cones from various random media, we found that when Bragg condition with the incident light beam is not met then the CBS cones from opals show a triangular line shape in excellent agreement with light diffusion theory. At Bragg condition, however, we observed a dramatic broadening of the opal CBS cones that depends on the incident angle and [hkl] direction. This broadening is explained as due to the light intensity decay in course of propagation along the Bragg direction {\em before the first} and {\em after the last} scattering events. We modified the CBS theory to incorporate the attenuation that results from the photonic band structure of the medium. Using the modified theory we extract from our CBS data the light mean free path and Bragg attenuation length at different [hkl]. Our study shows that CBS measurements are a unique experimental technique to explore photonic crystals with disorder, when other spectroscopical methods become ambiguous due to disorder-induced broadening.Comment: 10 pages, 5 figure

    Photonic Band Gaps of Three-Dimensional Face-Centered Cubic Lattices

    Full text link
    We show that the photonic analogue of the Korringa-Kohn-Rostocker method is a viable alternative to the plane-wave method to analyze the spectrum of electromagnetic waves in a three-dimensional periodic dielectric lattice. Firstly, in the case of an fcc lattice of homogeneous dielectric spheres, we reproduce the main features of the spectrum obtained by the plane wave method, namely that for a sufficiently high dielectric contrast a full gap opens in the spectrum between the eights and ninth bands if the dielectric constant ϵs\epsilon_s of spheres is lower than the dielectric constant ϵb\epsilon_b of the background medium. If ϵs>ϵb\epsilon_s> \epsilon_b, no gap is found in the spectrum. The maximal value of the relative band-gap width approaches 14% in the close-packed case and decreases monotonically as the filling fraction decreases. The lowest dielectric contrast ϵb/ϵs\epsilon_b/\epsilon_s for which a full gap opens in the spectrum is determined to be 8.13. Eventually, in the case of an fcc lattice of coated spheres, we demonstrate that a suitable coating can enhance gap widths by as much as 50%.Comment: 19 pages, 6 figs., plain latex - a section on coated spheres, two figures, and a few references adde
    corecore