856 research outputs found

    Comment on "Fitting the annual modulation in DAMA with neutrons from muons and neutrinos''

    Full text link
    We estimate rates of solar neutrino-induced neutrons in a DAMA/LIBRA-like detector setup, and find that the needed contribution to explain the annual modulation would require neutrino-induced neutron cross sections several orders of magnitude larger than current calculations indicate. Although these cross sections have never been measured, it is likely that the solar-neutrino effect on DAMA/LIBRA is negligible.Comment: Comment submitted to PR

    Search for Free Decay of Negative Pions in Water and Light Materials

    Get PDF
    We report on a search for the free decay component of pi- stopped in water and light materials. A non-zero value of this would be an indication of anomalous nu_e contamination to the nu_e and nu_mu_bar production at stopped-pion neutrino facilities. No free decay component of pi- was observed in water, Beryllium, and Aluminum, for which upper limits were established at 8.2E-4, 3.2E-3, and 7.7E-3, respectively

    Contamination Control and Assay Results for the Majorana Demonstrator Ultra Clean Components

    Full text link
    The MAJORANA DEMONSTRATOR is a neutrinoless double beta decay experiment utilizing enriched Ge-76 detectors in 2 separate modules inside of a common solid shield at the Sanford Underground Research Facility. The DEMONSTRATOR has utilized world leading assay sensitivities to develop clean materials and processes for producing ultra-pure copper and plastic components. This experiment is now operating, and initial data provide new insights into the success of cleaning and processing. Post production copper assays after the completion of Module 1 showed an increase in U and Th contamination in finished parts compared to starting bulk material. A revised cleaning method and additional round of surface contamination studies prior to Module 2 construction have provided evidence that more rigorous process control can reduce surface contamination. This article describes the assay results and discuss further studies to take advantage of assay capabilities for the purpose of maintaining ultra clean fabrication and process design.Comment: Proceedings of Low Radioactivity Techniques (LRT May 2017, Seoul

    White paper: CeLAND - Investigation of the reactor antineutrino anomaly with an intense 144Ce-144Pr antineutrino source in KamLAND

    Full text link
    We propose to test for short baseline neutrino oscillations, implied by the recent reevaluation of the reactor antineutrino flux and by anomalous results from the gallium solar neutrino detectors. The test will consist of producing a 75 kCi 144Ce - 144Pr antineutrino source to be deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). KamLAND's 13m diameter target volume provides a suitable environment to measure energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, "sterile" state. Such a measurement will be free of any reactor-related uncertainties. After 1.5 years of data taking the Reactor Antineutrino Anomaly parameter space will be tested at > 95% C.L.Comment: White paper prepared for Snowmass-2013; slightly different author lis

    Low Background Materials and Fabrication Techniques for Cables and Connectors in the Majorana Demonstrator

    Full text link
    The MAJORANA Collaboration is searching for the neutrinoless double-beta decay of the nucleus Ge-76. The MAJORANA DEMONSTRATOR is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a tonne scale Ge-76-based search (the LEGEND collaboration). In the DEMONSTRATOR, germanium detectors operate in an ultra-pure vacuum cryostat at 80 K. One special challenge of an ultra-pure environment is to develop reliable cables, connectors, and electronics that do not significantly contribute to the radioactive background of the experiment. This paper highlights the experimental requirements and how these requirements were met for the MAJORANA DEMONSTRATOR, including plans to upgrade the wiring for higher reliability in the summer of 2018. Also described are requirements for LEGEND R&D efforts underway to meet these additional requirements.Comment: Proceedings of LRT 201
    corecore