289 research outputs found

    Frequency shifts in gravitational resonance spectroscopy

    Full text link
    Quantum states of ultracold neutrons in the gravitational field are to be characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts, which we call Stern-Gerlach shift, interference shift, and spectator state shift, appear in conceivable measurement schemes and have general importance. These shifts have to be taken into account in precision experiments

    Antiproton-Hydrogen annihilation at sub-kelvin temperatures

    Get PDF
    The main properties of the interaction of ultra low-energy antiprotons (E≀10−6% E\le10^{-6} a.u.) with atomic hydrogen are established. They include the elastic and inelastic cross sections and Protonium (Pn) formation spectrum. The inverse Auger process (Pn+e→H+pˉPn+e \to H+\bar{p}) is taken into account in the framework of an unitary coupled-channels model. The annihilation cross-section is found to be several times smaller than the predictions made by the black sphere absorption models. A family of pˉH\bar{p}H nearthreshold metastable states is predicited. The dependence of Protonium formation probability on the position of such nearthreshold S-matrix singularities is analysed. An estimation for the HHˉH\bar{H} annihilation cross section is obtained.Comment: latex.tar.gz file, 22 pages, 9 figure

    Quantum reflection of antihydrogen from a liquid helium film

    Full text link
    We study the quantum reflection of ultracold antihydrogen atoms bouncing on the surface of a liquid helium film. The Casimir-Polder potential and quantum reflection are calculated for different thicknesses of the film supported by different substrates. Antihydrogen can be protected from anni- hilation for as long as 1.3s on a bulk of liquid 4He, and 1.7s for liquid 3He. These large lifetimes open interesting perspectives for spectroscopic measurements of the free fall acceleration of antihydrogen. Variation of the scattering length with the thickness of a film of helium shows interferences which we interpret through a Liouville transformation of the quantum reflection problem

    Prospects for studies of the free fall and gravitational quantum states of antimatter

    Get PDF
    Different experiments are ongoing to measure the effect of gravity on cold neutral antimatter atoms such as positronium, muonium and antihydrogen. Among those, the project GBAR in CERN aims to measure precisely the gravitational fall of ultracold antihydrogen atoms. In the ultracold regime, the interaction of antihydrogen atoms with a surface is governed by the phenomenon of quantum reflection which results in bouncing of antihydrogen atoms on matter surfaces. This allows the application of a filtering scheme to increase the precision of the free fall measurement. In the ultimate limit of smallest vertical velocities, antihydrogen atoms are settled in gravitational quantum states in close analogy to ultracold neutrons (UCNs). Positronium is another neutral system involving antimatter for which free fall under gravity is currently being investigated at UCL. Building on the experimental techniques under development for the free fall measurement, gravitational quantum states could also be observed in positronium. In this contribution, we review the status of the ongoing experiments and discuss the prospects of observing gravitational quantum states of antimatter and their implications.Comment: This work reviews contributions made at the GRANIT 2014 workshop on prospects for the observation of the free fall and gravitational quantum states of antimatte

    A spectroscopy approach to measure the gravitational mass of antihydrogen

    Full text link
    We study a method to induce resonant transitions between antihydrogen (Hˉ\bar{H}) quantum states above a material surface in the gravitational field of the Earth. The method consists of applying a gradient of magnetic field, which is temporally oscillating with the frequency equal to a frequency of transition between gravitational states of antihydrogen. A corresponding resonant change in the spatial density of antihydrogen atoms could be measured as a function of the frequency of applied field. We estimate an accuracy of measuring antihydrogen gravitational states spacing and show how a value of the gravitational mass of the Hˉ\bar{H} atom could be deduced from such a measurement. We also demonstrate that a method of induced transitions could be combined with a free-fall-time measurement in order to further improve the precision

    A magneto-gravitational trap for precision studies of gravitational quantum states

    Full text link
    Observation time is the key parameter for improving the precision of measurements of gravitational quantum states of particles levitating above a reflecting surface. We propose a new method of long confinement in such states of atoms, anti-atoms, neutrons and other particles possessing a magnetic moment. The Earth gravitational field and a reflecting mirror confine particles in the vertical direction. The magnetic field originating from electric current passing through a vertical wire confines particles in the radial direction. Under appropriate conditions, motions along these two directions are decoupled to a high degree. We estimate characteristic parameters of the problem, and list possible systematic effects that limit storage times due to the coupling of the two motions. In the limit of low particle velocities and magnetic fields, precise control of the particle motion and long storage times in the trap can provide ideal conditions for both gravitational, optical and hyperfine spectroscopy: for the sensitive verification of the equivalence principle for antihydrogen atoms; for increasing the accuracy of optical and hyperfine spectroscopy of atoms and antiatoms; for improving constraints on extra fundamental interactions from experiments with neutrons, atoms and antiatoms
    • 

    corecore