28 research outputs found

    Prospects in Analytical Atomic Spectrometry

    Full text link
    Tendencies in five main branches of atomic spectrometry (absorption, emission, mass, fluorescence and ionization spectrometry) are considered. The first three techniques are the most widespread and universal, with the best sensitivity attributed to atomic mass spectrometry. In the direct elemental analysis of solid samples, the leading roles are now conquered by laser-induced breakdown and laser ablation mass spectrometry, and the related techniques with transfer of the laser ablation products into inductively-coupled plasma. Advances in design of diode lasers and optical parametric oscillators promote developments in fluorescence and ionization spectrometry and also in absorption techniques where uses of optical cavities for increased effective absorption pathlength are expected to expand. Prospects for analytical instrumentation are seen in higher productivity, portability, miniaturization, incorporation of advanced software, automated sample preparation and transition to the multifunctional modular architecture. Steady progress and growth in applications of plasma- and laser-based methods are observed. An interest towards the absolute (standardless) analysis has revived, particularly in the emission spectrometry.Comment: Proofread copy with an added full reference list of 279 citations. A pdf version of the final published review may be requested from Alexander Bol'shakov <[email protected]

    Renal cell carcinoma drug and cell therapy: today and tomorrow

    No full text
    Today, considerable progress in the renal cell carcinoma (RCC) treatment has been made due to development of targeted and immunotherapeutic approaches to the RCC treatment, especially in metastasising carcinoma. In the early stages of RCC, it is possible to use partial or total surgical nephrectomy, but in metastases development, the range of efficient treatment methods is dramatically limited. Appearance of targeted drugs like PD-1 and CTLA-4 receptors and their ligands' inhibitors in clinical practice has significantly increased the total survival rate of patients with renal cell carcinoma. Emergence of adoptive cell therapy has opened new possibilities and prospects in RCC treatment. Previously activated in vitro cells are used there, which provides antineoplastic activity. For example, it could be antigen-specific cytotoxic T-lymphocytes (CTL), lymphokine-activated natural killers (LAK-NK-cells) and tumour-infiltrating lymphocytes (TILs). In this review, the authors specified the main molecular markers, associated with RCC; and signalling pathways (VEGFR- and EGFR-signalling pathway), which directly take part in carcinogenesis. The paper also looks at clinically applicable targeted immune drugs and the principle of their effect on tumorous cells. Besides, modern clinical studies of cell drugs have been considered. At the moment, there are a number of variants of targeted and immune drugs for the metastatic RCC treatment. Patients have no opportunity to use all the available agents because of their cost and toxicity level. For the most efficient treatment of patients with diagnosed metastatic RCC, it is necessarily to carry out risk stratification and prognostic factors for the response to treatment

    Synthesis of nanocrystalline ZnO by the thermal decomposition of [Zn(H2O)(O2C5H7)(2)] in isoamyl alcohol

    No full text
    It was studied how the conditions of heat treatment of a [Zn(H2O)(O2C5H7)(2)] solution in isoamyl alcohol at 120-140A degrees C for 2-60 min affect the precursor decomposition mechanism and the characteristics of the obtained nanocrystalline zinc oxide. In all the cases, the product was a crystalline substance with the wurtzite structure and a size of crystallites of 14-18 nm, which was independent of the synthesis conditions. The thermal behavior and microstructure of the separated and dried nanostructured ZnO powder were investigated. It was determined how the duration and temperature of the heat treatment of the precursor solution affects the microstructure of ZnO coatings dip-coated onto glass substrates using dispersions produced at 120 and 140A degrees C. The nanosized ZnO application procedure was shown to be promising for creating a gas-sensing layer of chemical gas sensors for detecting 1% H-2 ( was 58 +/- 2 at an operating temperature of 300A degrees C) and 4 ppm NO2 ( were 15 +/- 1 and 1.9 +/- 0.1 at operating temperatures of 200 and 300A degrees C, respectively)
    corecore