3 research outputs found

    Damping by slow relaxing rare earth impurities in Ni80Fe20

    Full text link
    Doping NiFe by heavy rare earth atoms alters the magnetic relaxation properties of this material drastically. We show that this effect can be well explained by the slow relaxing impurity mechanism. This process is a consequence of the anisotropy of the on site exchange interaction between the 4f magnetic moments and the conduction band. As expected from this model the magnitude of the damping effect scales with the anisotropy of the exchange interaction and increases by an order of magnitude at low temperatures. In addition our measurements allow us to determine the relaxation time of the 4f electrons as a function of temperature

    Electron correlations in Co2_2Mn1−x_{1-x}Fex_xSi Heusler compounds

    Full text link
    This study presents the effect of local electronic correlations on the Heusler compounds Co2_2Mn1−x_{1-x}Fex_xSi as a function of the concentration xx. The analysis has been performed by means of first-principles band-structure calculations based on the local approximation to spin-density functional theory (LSDA). Correlation effects are treated in terms of the Dynamical Mean-Field Theory (DMFT) and the LSDA+U approach. The formalism is implemented within the Korringa-Kohn-Rostoker (KKR) Green's function method. In good agreement with the available experimental data the magnetic and spectroscopic properties of the compound are explained in terms of strong electronic correlations. In addition the correlation effects have been analysed separately with respect to their static or dynamical origin. To achieve a quantitative description of the electronic structure of Co2_2Mn1−x_{1-x}Fex_xSi both static and dynamic correlations must be treated on equal footing.Comment: 12 pages, 5 figure
    corecore