137 research outputs found

    Vortex-like state observed in ferromagnetic contacts

    Full text link
    Point-contacts (PC) offer a simple way to create high current densities, 10^9 A/cm^2 and beyond, without substantial Joule heating. We have shown recently (Nano Letters, 7 (2007) 927) that conductivity of nanosized PCs between a normal and ferromagnetic metals exhibits bi-stable hysteretic states versus both bias current and external magnetic field - the effect typical for spin-valve structures. Here we report that apart from the bi-stable state a third intermediate-resistance state is occasionally observed. We interpret this state as due to a spin-vortex in the PC, nucleated either by Oersted field of the bias current and/or by the circular geometry of PC. The observed three-level-states in the PC conductivity testify that the interface spins are both weakly coupled to the spins in the bulk and have depressed exchange interaction within the surface layer.Comment: 4 pgs., 4 figs. submitted to ICM-09 (July 26-21, Karlsruhe) V2: corrected typos, accepted for publication in J. Phys.: Conf. Serie

    Superconducting gap and pair breaking in CeRu2 studied by point contacts

    Full text link
    The superconducting gap in a CeRu2_{2} single crystal is investigated by point contacts. BCS-like behavior of the gap Δ\Delta in the temperature range below Tc<_{c}^{*}<Tc_{c}, where Tc_{c} is the critical temperature, is established, indicating the presence of a gapless superconductivity region (between Tc_{c}^{*} and Tc_{c}). The pair-breaking effect of paramagnetic impurities, supposedly Ce ions, is taken into consideration using the Scalski-Betbeder-Matibet-Weiss approach based on Abrikosov-Gorkov theory. It allows us to recalculate the superconducting order parameter Δα\Delta ^{\alpha} (in the presence of paramagnetic impurities) and the gap ΔP\Delta ^{P} (in the pure case) for the single crystal and for the previously studied polycrystalline CeRu2_{2}. The value 2ΔP\Delta^{P}(0) \approx 2 meV, with 2ΔP\Delta ^{P}(0)//kB_{B}Tc_{c} \approx 3.75, is found in both cases, indicating that CeRu2_{2} is a ``moderate'' strong-coupling superconductor.Comment: 4 pages incl. 3 figs., publ. in Fiz. Nizk. Temp. (http://fnte.ilt.kharkov.ua/list.html

    Break-junction experiments on the zero-bias anomaly of non-magnetic and ferromagnetically ordered metals

    Full text link
    We have investigated break junctions of normal non-magnetic metals as well as ferromagnets at low temperatures. The point contacts with radii 0.15 - 15 nm showed zero-bias anomalies which can be attributed to Kondo scattering at a single Kondo impurity at the contact or to the switching of a single conducting channel. The Kondo temperatures derived from the width of the anomalies varied between 10 and 1000 K. These results agree well with literature data on atomic-size contacts of the ferromagnets as well as with spear-anvil type contacts on a wide variety of metals.Comment: 7 pages, 4 figures, submitted to Proceedings of the 26th Conference on Low Temperature Physic

    Systematic study of the two band/two gap superconductivity in carbon-substituted MgB2 by point-contact spectroscopy

    Full text link
    Point-contact measurements on the carbon-substituted Mg(B1x_{1-x}Cx_x)2_2 filament/powder samples directly reveal a retention of the two superconducting energy gaps in the whole doping range from x=0x = 0 to x0.1x \approx 0.1. The large gap on the σ\sigma-band is decreased in an essentially linear fashion with increasing the carbon concentrations. The changes in the the small gap Δπ\Delta_{\pi} up to 3.8 % C are proportionally smaller and are more difficult to detect but for the heavily doped sample with x0.1x \approx 0.1 and Tc=22T_c = 22 K both gaps are still present, and significantly reduced, consistent with a strong essentially linear, reduction of each gap with the transition temperature.Comment: 5 eps figure

    Point-contact study of ReFeAs(1-x)Fx (Re=La, Sm) superconducting films

    Full text link
    Point-contact (PC) Andreev-reflection (AR) measurements of the superconducting gap in iron-oxipnictide ReFeAsO_{1-x}F_x (Re=La, Sm) films have been carried out. The value of the gap is distributed in the range 2\Delta \simeq 5-10 meV (for Re=Sm) with a maximum in the distribution around 6 meV. Temperature dependence of the gap \Delta(T) can be fitted well by BCS curve giving reduced gap ratio 2\Delta /kT_c^*\simeq 3.5 (here T_c^* is the critical temperature from the BCS fit). At the same time, an expected second larger gap feature was difficult to resolve distinctly on the AR spectra making determination reliability of the second gap detection questionable. Possible reasons for this and the origin of other features like clear-cut asymmetry in the AR spectra and current regime in PCs are discussed.Comment: 6 two-column pages, 6 figs., 26 Refs., to be published in Superconductor Science and Technolog

    The antiferromagnetic transition of UPd2Al3 break-junctions: A new realization of N-shaped current-voltage characteristics

    Full text link
    We have investigated metallic break junctions of the heavy-fermion compound UPd2Al3 at low temperatures between 0.1K and 9K and in magnetic fields up to 8T. Both the current-voltage I(V) characteristics and the dV/dI (V) spectra clearly showed the superconducting (TcT_{\rm c}\simeq 1.8K) as well as the antiferromagnetic (TNT_{\rm N}\simeq14K) transition at low temperatures when the bias voltage is raised. The junctions with lateral size of order 200nm had huge critical current densities around $5\times 10^{10} A/m^2 at the antiferromagnetic transition and hysteretic I(V) characteristics. Degrading the quality of the contacts by in situ increasing the local residual resistivity reduced the hysteresis. We show that those hysteretic I(V) curves can be reproduced theoretically by assuming the constriction to be in the thermal regime. It turns out that these point contacts represent non-linear devices with N-shaped I(V) characteristics that have a negative differential resistance like an Esaki tunnel diode.Comment: 12 pages, 7 fig

    Comment on "Experimental determination of superconducting parameters for the intermetallic perovskite superconductor MgCNi3_3"

    Full text link
    In a recent paper (Phys. Rev. {\bf B 67}, 094502 (2003)) Mao et al. investigated the bias-dependent conductance of mechanical junctions between superconducting MgCNi3_3 and a sharp W tip. They interpreted their results in terms of 'single-particle tunneling'. We show it is more likely that current transport through those junctions is determined by thermal effects due to the huge normal-state resistivity of MgCNi3_3. Therefore no conclusion can be drawn about the possible unconventional pairing or strong-coupling superconductivity in MgCNi3_3.Comment: 2 pages, 1 Fig. Comment on Z. Q. Mao et al. (Phys. Rev. {\bf B 67}, 094502 (2003)
    corecore