32 research outputs found

    Nonconventional Large Deviations Theorems

    Full text link
    We obtain large deviations theorems for nonconventional sums with underlying process being a Markov process satisfying the Doeblin condition or a dynamical system such as subshift of finite type or hyperbolic or expanding transformation

    Ruelle-Perron-Frobenius spectrum for Anosov maps

    Full text link
    We extend a number of results from one dimensional dynamics based on spectral properties of the Ruelle-Perron-Frobenius transfer operator to Anosov diffeomorphisms on compact manifolds. This allows to develop a direct operator approach to study ergodic properties of these maps. In particular, we show that it is possible to define Banach spaces on which the transfer operator is quasicompact. (Information on the existence of an SRB measure, its smoothness properties and statistical properties readily follow from such a result.) In dimension d=2d=2 we show that the transfer operator associated to smooth random perturbations of the map is close, in a proper sense, to the unperturbed transfer operator. This allows to obtain easily very strong spectral stability results, which in turn imply spectral stability results for smooth deterministic perturbations as well. Finally, we are able to implement an Ulam type finite rank approximation scheme thus reducing the study of the spectral properties of the transfer operator to a finite dimensional problem.Comment: 58 pages, LaTe

    Dissipation time and decay of correlations

    Full text link
    We consider the effect of noise on the dynamics generated by volume-preserving maps on a d-dimensional torus. The quantity we use to measure the irreversibility of the dynamics is the dissipation time. We focus on the asymptotic behaviour of this time in the limit of small noise. We derive universal lower and upper bounds for the dissipation time in terms of various properties of the map and its associated propagators: spectral properties, local expansivity, and global mixing properties. We show that the dissipation is slow for a general class of non-weakly-mixing maps; on the opposite, it is fast for a large class of exponentially mixing systems which include uniformly expanding maps and Anosov diffeomorphisms.Comment: 26 Pages, LaTex. Submitted to Nonlinearit

    Spectral properties of noisy classical and quantum propagators

    Full text link
    We study classical and quantum maps on the torus phase space, in the presence of noise. We focus on the spectral properties of the noisy evolution operator, and prove that for any amount of noise, the quantum spectrum converges to the classical one in the semiclassical limit. The small-noise behaviour of the classical spectrum highly depends on the dynamics generated by the map. For a chaotic dynamics, the outer spectrum consists in isolated eigenvalues (``resonances'') inside the unit circle, leading to an exponential damping of correlations. On the opposite, in the case of a regular map, part of the spectrum accumulates along a one-dimensional ``string'' connecting the origin with unity, yielding a diffusive behaviour. We finally study the non-commutativity between the semiclassical and small-noise limits, and illustrate this phenomenon by computing (analytically and numerically) the classical and quantum spectra for some maps.Comment: 35 pages, 6 .eps figures, to be published in Nonlinearity. I added some references and comment

    Some properties of a soft magnetic material from oxidized iron powder

    No full text
    corecore