18,775 research outputs found

    Incentivizing High-quality Content from Heterogeneous Users: On the Existence of Nash Equilibrium

    Full text link
    We study the existence of pure Nash equilibrium (PNE) for the mechanisms used in Internet services (e.g., online reviews and question-answer websites) to incentivize users to generate high-quality content. Most existing work assumes that users are homogeneous and have the same ability. However, real-world users are heterogeneous and their abilities can be very different from each other due to their diverse background, culture, and profession. In this work, we consider heterogeneous users with the following framework: (1) the users are heterogeneous and each of them has a private type indicating the best quality of the content she can generate; (2) there is a fixed amount of reward to allocate to the participated users. Under this framework, we study the existence of pure Nash equilibrium of several mechanisms composed by different allocation rules, action spaces, and information settings. We prove the existence of PNE for some mechanisms and the non-existence of PNE for some mechanisms. We also discuss how to find a PNE for those mechanisms with PNE either through a constructive way or a search algorithm

    Demonstration of Entanglement-Enhanced Phase Estimation in Solid

    Full text link
    Precise parameter estimation plays a central role in science and technology. The statistical error in estimation can be decreased by repeating measurement, leading to that the resultant uncertainty of the estimated parameter is proportional to the square root of the number of repetitions in accordance with the central limit theorem. Quantum parameter estimation, an emerging field of quantum technology, aims to use quantum resources to yield higher statistical precision than classical approaches. Here, we report the first room-temperature implementation of entanglement-enhanced phase estimation in a solid-state system: the nitrogen-vacancy centre in pure diamond. We demonstrate a super-resolving phase measurement with two entangled qubits of different physical realizations: an nitrogen-vacancy centre electron spin and a proximal 13{}^{13}C nuclear spin. The experimental data shows clearly the uncertainty reduction when entanglement resource is used, confirming the theoretical expectation. Our results represent an elemental demonstration of enhancement of quantum metrology against classical procedure.Comment: 9 pages including the supplementary material, 6 figures in main text plus 3 figures in supplementary materia

    Interconnecting bilayer networks

    Full text link
    A typical complex system should be described by a supernetwork or a network of networks, in which the networks are coupled to some other networks. As the first step to understanding the complex systems on such more systematic level, scientists studied interdependent multilayer networks. In this letter, we introduce a new kind of interdependent multilayer networks, i.e., interconnecting networks, for which the component networks are coupled each other by sharing some common nodes. Based on the empirical investigations, we revealed a common feature of such interconnecting networks, namely, the networks with smaller averaged topological differences of the interconnecting nodes tend to share more nodes. A very simple node sharing mechanism is proposed to analytically explain the observed feature of the interconnecting networks.Comment: 9 page
    corecore