1,694 research outputs found

    Molecular Characterization of Cultivated Bromeliad Accessions with Inter-Simple Sequence Repeat (ISSR) Markers

    Get PDF
    Bromeliads are of great economic importance in flower production; however little information is available with respect to genetic characterization of cultivated bromeliads thus far. In the present study, a selection of cultivated bromeliads was characterized via inter-simple sequence repeat (ISSR) markers with an emphasis on genetic diversity and population structure. Twelve ISSR primers produced 342 bands, of which 287 (~84%) were polymorphic, with polymorphic bands per primer ranging from 17 to 34. The Jaccard’s similarity ranged from 0.08 to 0.89 and averaged ~0.30 for the investigated bromeliads. The Bayesian-based approach, together with the un-weighted paired group method with arithmetic average (UPGMA)-based clustering and the principal coordinate analysis (PCoA), distinctly grouped the bromeliads from Neoregelia, Guzmania, and Vriesea into three separately clusters, well corresponding with their botanical classifications; whereas the bromeliads of Aechmea other than the recently selected hybrids were not well assigned to a cluster. Additionally, ISSR marker was proven efficient for the identification of hybrids and bud sports of cultivated bromeliads. The findings achieved herein will further our knowledge about the genetic variability within cultivated bromeliads and therefore facilitate breeding for new varieties of cultivated bromeliads in future as well

    Learning Second Order Local Anomaly for General Face Forgery Detection

    Full text link
    In this work, we propose a novel method to improve the generalization ability of CNN-based face forgery detectors. Our method considers the feature anomalies of forged faces caused by the prevalent blending operations in face forgery algorithms. Specifically, we propose a weakly supervised Second Order Local Anomaly (SOLA) learning module to mine anomalies in local regions using deep feature maps. SOLA first decomposes the neighborhood of local features by different directions and distances and then calculates the first and second order local anomaly maps which provide more general forgery traces for the classifier. We also propose a Local Enhancement Module (LEM) to improve the discrimination between local features of real and forged regions, so as to ensure accuracy in calculating anomalies. Besides, an improved Adaptive Spatial Rich Model (ASRM) is introduced to help mine subtle noise features via learnable high pass filters. With neither pixel level annotations nor external synthetic data, our method using a simple ResNet18 backbone achieves competitive performances compared with state-of-the-art works when evaluated on unseen forgeries

    Nonlinear Improvement of Qubit-qudit Entanglement Witnesses

    Full text link
    The entanglement witness is an important and experimentally applicable tool for entanglement detection. In this paper, we provide a nonlinear improvement of any entanglement witness for 2⊗d2\otimes d quantum systems. Compared with any existing entanglement witness, the improved separability criterion only needs two more measurements on local observables. Detailed examples are employed to illustrate the efficiency of the nonlinear improvement for general, optimal and non-decomposable entanglement witnesses.Comment: 11 pages, 0 figure

    2-Phenyl-1,3-selenazole-4-carb­oxy­lic acid

    Get PDF
    In the title compound, C10H7NO2Se, the two rings are twisted, making a dihedral angle of 12.42 (9)°. In the crystal, pairs of mol­ecules are disposed about an inversion center, generating O—H⋯O hydrogen-bonded dimers

    Tris(1,10-phenanthroline-κ2 N,N′)zinc(II) chloride 2-phenyl-4-selenazole-5-car­box­yl­ate decahydrate

    Get PDF
    The asymmetric unit of the title salt, [Zn(C12H8N2)3](C10H6NO2Se)Cl·10H2O, contains a [Zn(phen)3]2+ cation (phen is 1,10-phenanthroline), uncoordinated chloride and 2-phenyl-4-selenazole-5-carboxyl­ate anions and ten uncoord­in­ated water mol­ecules. The central ZnII ion is six-coordinated by six N atoms from three phen ligands in a distorted octa­hedral geometry. An extensive O—H⋯O, O—H⋯N and O—H⋯Cl hydrogen-bonding network stabilizes the crystal structure
    • …
    corecore